Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

Progress in Earth and Planetary Science - Tập 7 - Trang 1-17 - 2020
Davide Bassi1, Juan C. Braga2, Masato Owada3, Julio Aguirre2, Jere H. Lipps4, Hideko Takayanagi5, Yasufumi Iryu5
1Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Ferrara, Italy
2Departamento de Estratigrafia y Paleontologia, Universidad de Granada, Granada, Spain
3Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Japan
4Department of Integrative Biology and Museum of Paleontology, University of California, California, USA
5Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai, Japan

Tóm tắt

Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117 m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochaenolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20 m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.

Tài liệu tham khảo

Adey W, Halfar J, Humphreys A, Suskiewicz T, Belanger D, Gagnon P, Fox M (2015) Subartic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios 30:281–293. https://doi.org/10.2110/palo.2014.075 Aguirre J, Braga JC, Bassi D (2017b) The role of rhodoliths and rhodolith beds in the rock record and their use in palaeoenvironmental reconstructions. In: Riosmena-Rodriguez R, Nelson W, Aguirre J (eds) Rhodolith/maerl beds: a global perspective. Springer, Berlin, spec vol, pp 105−138. https://doi.org/10.1007/978-3-319-29315-8_5 Aguirre J, Doménech R, Martinell J, Mayoral E, Santos A, Pérez-Asensio JN (2017a) Witnesses of the early Pliocene Sea-level rise in the Manilva Basin (Málaga, S Spain). Span J Palaeontol 32:35–52 Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Frncini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical touth West Atlantic. PLoS One 7(4):e35171. https://doi.org/10.1371/journal.pone.0035171 Arai K, Inoue T, Matsuda H, Machiyama H, Sasaki K, Iryu Y, Sugihara K, Fujita K, Nara M (2008) Shallow seismic profiling survey on postglacial fore-reef near the present-day northern limit of coral reef formation in the northwestern Pacific. Proc 11th Int Coral Reef Symp 4:9–52. Baarli BG, Santos A, da Silva CM, Ledesma-Vázquez J, Mayoral E, Cachão M, Johnson ME (2012) Diverse Macroids and Rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. J Coast Res 28:296–305. https://doi.org/10.2112/11T-00010.1 Bagur M, Gutiérrez JL, Arribas LP, Palomo MG (2014) Endolithic invertebrate communities and bioerosion rates in southwestern Atlantic intertidal consolidated sediments. Mar Biol 161:2279–2292. https://doi.org/10.1007/s00227-014-2505-8 Bagur M, Gutiérrez JL, Arribas LP, Palomo MG (2016) Complementary influences of co-occurring physical ecosystem engineers on species richness: insights from a Patagonian rocky shore. Biodivers Conserv 25:2787–2802. https://doi.org/10.1007/s10531-016-1203-x Bagur M, Richardson CA, Gutiérrez JL, Arribas LP, Socorro Doldan M, Palomo MG (2013) Age, growth and mortality in four populations of the boring bivalve Lithophaga patagonica from Argentina. J Sea Res 81:49–56. https://doi.org/10.1016/j.seares.2013.04.003 Bassi D, Humblet M, Iryu Y (2011) Recent ichnocoenosis in deep water macroids, Ryukyu Islands, Japan. Palaios 26:232–238. https://doi.org/10.2110/palo.2010.p10-093r Bassi D, Iryu Y, Braga JC, Takayanagi H, Tsuji T (2013) Bathymetric distribution of ichnocoenoses from recent subtropical algal nodules off Fraser Island, eastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 369:58–66. https://doi.org/10.1016/j.palaeo.2012.10.003 Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2012a) Recent macroids on the Kikai-jima shelf, Central Ryukyu Islands, Japan. Sedimentology 59:2024–2041. https://doi.org/10.1111/j.1365-3091.2012.01333.x Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2019) Deep-water macroid beds of the Ryukyu Islands, Japan: encrusting acervulinids as ecosystem engineers. J Coast Res 35:463–466. https://doi.org/10.2112/JCOASTRES-D-18-00049.1 Bassi D, Iryu Y, Nebelsick JH (2012b) To be or not to be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. J Coast Res 28:288–295. https://doi.org/10.2112/11T-00001.1 Bassi D, Posenato R, Nebelsick JH, Owada M, Domenicali E, Iryu Y (2017) Bivalve borings in lower Jurassic Lithiotis fauna from northeastern Italy and its palaeoecological interpretation. Hist Biol 29:937–946. https://doi.org/10.1080/08912963.2016.1265956 Blanchon P, Perry CT (2004) Taphonomic differentiation of Acropora palmata facies in cores from Campeche Bank reefs, Gulf of México. Sedimentology 51:53–76. https://doi.org/10.1046/j.1365-3091.2003.00610.x Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682 Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224 Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths – a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 225–242 Bosence DWJ (1985) The “Coralligene” of the Mediterranean - a recent analogue for tertiary coralline algal limestones. In: Toomey DF, Nitecki MH (eds) Contemporary research and applications. Springer, Berlin, pp 216–225 Boyd R, Ruming K, Goodwin I, Sandstrom M, Schroder-Adams C (2008) Highstand transport of coastal sand to the deep ocean: a case study from Fraser Island, Southeast Australia. Geology 36:15–18. https://doi.org/10.1130/G24211A.1 Brasileiro PS, Braga JC, Amado-Filho GM, Leal RN, Bassi D, Franco T, Bastos AC, Moura RL (2018) Burial rate determines Holocene rhodolith development on the Brazilian shelf. Palaios 33:464–477. https://doi.org/10.2110/palo.2017.109 Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman and Hall, London, 361 pp Bromley RG, D’Alessandro A (1983) Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora. Riv Ital Paleontol Strat 89:283–309 Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv Ital Paleontol Strat 90:227–296 Bromley RG, D’Alessandro A (1987) Bioerosion of the Plio-Pleistocene transgression of southern Italy. Riv Ital Paleontol Strat 93:379–442 Bromley RG, D’Alessandro A (1989) Ichnological study of shallow marine endolithic sponges from the Italian coast. Riv Ital Paleontol Strat 95:279–314 Cachão M, Redweik P, Barreira E, Dinis J, Catita C, da Silva CM, Santos A, Mayoral E, Linder W (2011) Photogrammetric and spatial analysis of a bioeroded Early Miocene rocky shore, western Portugal. Facies 57:417–429. https://doi.org/10.1007/s10347-010-0248-7 Carter JG (1978) Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Bull Peabody Mus Nat Hist 41:1–92 Carter JG, McDowell T, Namboodiri N (2008) The identity of Gastrochaena cuneiforms Spengler, 1783, and the evolution of Gastrochaena, Rocellaria, and Lamychaena (Mollusca, Bivalvia, Gastrochaenoidea). J Paleontol 82:102–117. https://doi.org/10.1666/04-066.1 Checconi A, Bassi D, Monaco P, Carannante G (2010) Re-deposited rhodoliths in the middle Miocene hemipelagic deposits of Vitulano (southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sediment Geol 225:50–66. https://doi.org/10.1016/j.sedgeo.2010.01.001 Choukroun S, Ridd PV, Brinkman R, McKinna LIW (2010) On the surface circulation in the western Coral Sea and residence times in the great barrier reef. J Geophys Res 115(C6):C06013. https://doi.org/10.1029/2009JC005761 Davies PJ, Radke BM, Robison C (1976) The evolution of one tree reef, southern great barrier reef, Queensland. BMR J Aust Geol Geophys 1:231–240 De Grave S, Fazakerley H, Kelly L, Guiry MD, Ryan M, Walshe J (2000) A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Mar res Ser 10. The Marine Institute, Dublin http://hdl.handle.net/10793/209 Diez ME, Vázquez N, Urteaga D, Cremonte F (2014) Species associations and environmental factors influence activity of borers on Ostrea puelchana in northern Patagonia. J Molluscan Stud 80:430–34. https://doi.org/10.1093/mollus/eyu035 Domènech R, Farinati EA, Martinell J (2014) Crassostrea patagonica (d’Orbigny, 1842) shell concentrations from the late Miocene of Rio Negro province, NE Patagonia, Argentina. Spanish J Paleontol 29:165–182 Donovan SK (2002) A new ichnospecies of Gastrochaenolites Leymerie from the Pleistocene port Morant formation of Southeast Jamaica and the taphonomy of calcareous linings in clavate borings. Ichnos 9:61–66. https://doi.org/10.1080/10420940190034085 Donovan SK (2013) A recent example of the boring Gastrochaenolites lapidicus Kelly and Bromley and its producing organism in north Norkfolk, eastern England. Bull. Mizunami Fossil Mus 39:69–71 Donovan SK, Ewin TAM (2018) Substrate is a poor ichnotaxobase: a new demonstration. Swiss J Palaeontol 1:103–107. https://doi.org/10.1007/s13358-018-0146-0 Donovan SK, Harper DAT, Portell RW, Renema W (2014) Neoichnology and implications for stratigraphy of reworked upper Oligocene oysters, Antigua, West Indies. Proc Geologists’s Ass 125:99–106. https://doi.org/10.1016/j.pgeola.2013.10.002 Donovan SK, Hensley C (2006) Gastrochaenolites Leymerie in the Cenozoic of the Antillean region (review). Ichnos 13:11–19. https://doi.org/10.1080/10420940500511629 Edinger EN, Risk MJ (1994) Oligocene–Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios 9:576–598 Edinger EN, Risk MJ (1997) Sponge borehole size as a relative measure of bioerosion and paleoproductivity. Lethaia 29:275–286. https://doi.org/10.1111/j.1502-3931.1996.tb01660.x Ekdale AA, Bromley RG (2001) Bioerosional innovation in the early Ordovician of Sweden: a revolutionary adaptation for living in carbonate hardgrounds. Lethaia 34:1–12. https://doi.org/10.1080/002411601300068152 Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology. SEPM Short Course 15, Tulsa, 317 pp Fajemila O, Langer MR, Lipps JH (2020) Atlas of shallow-water tropical benthic Foraminifera from Moorea (Society Archipelago, French Polynesia). Cushman Found Foraminifer Res Spec Publ 48. In press Fajemila OT, Langer MR, Lipps JH (2015) Spatial patterns in the distribution, diversity and abundance of benthic foraminifera around Moorea (Society Archipelago, French Polynesia). PLoS One 10(12): e0145752. https://doi.org/10.1371/journal.pone.0145752 Figuiredo MAO, Coutinho R, Villas-Boas AB, Tâmega FTS, Mariath R (2012) Deep-water rhodolith productivity and growth in the southern Atlantic. J Appl Phycol 24:487–493. https://doi.org/10.1007/s10811-012-9802-8 Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 87:659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x Foster MS, Amado-Filho GM, Kamenos NA, Riosmena-Rodríguez R, Steller DL (2013) Rhodoliths and rhodolith beds. In: Lange M (ed) Smithsonian contributions to the marine sciences 39. Smithsonian Institution Scholarly Press, Washington DC, pp 143–155 Frantz B, Kashgarian M, Coale KH, Foster MS (2000) Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnol Oceanogr 45:1773−1777. https://doi.org/10.4319/lo.2000.45.8.1773 Gibert JM, de Domènech R, Martinell J (2004) An ethological framework for animal bioerosion trace fossils upon mineral substrate with proposal of a new class, Fixichnia. Lethaia 37:429–437. https://doi.org/10.1080/00241160410002144 Gibert JM, de Domènech R, Martinell J (2012) Rocky shorelines. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, Developments in sedimentology, vol 64. Springer, Berlin, pp 441–462 Graham DJ, Midglay NG (2000) Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method. Earth Sur Proc Land 25:1473–1477. https://doi.org/10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53:2681–2694. https://doi.org/10.2307/40058355 Hollander J, Collyer ML, Adams DC, Johannesson K. 2006. Phenotypic plasticity in two marine snails: constraints superseding life history. J Evol Biol 19(6):1861–1872. https://doi.org/10.1111/j.1420-9101.2006.01171.x Hottinger L (1983) Neritic macroid genesis, an ecological approach. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 38–55. https://doi.org/https://doi.org/10.1007/978-3-642-68869-0_5 Huber M (2010) Compendium of bivalves. ConchBooks Vorm, Hackenheim, 904 pp Iryu Y, Nakamori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sediment Geol 99:243–258. https://doi.org/10.1016/0037-0738(95)00047-C Ito Y (1999) Ontogenetic changes in boring behavior by the rock-boring bivalve, Barnea manilensis. Veliger 42(2):157–168 J-DOSS, JODC Data On-line Service System, Japan. https://www.jodc.go.jp/service.htm. Accessed 01 March 2020 Kamenos NA, Cusack M, Moore PG (2008) Red coralline algae are global paleothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72:771–779. https://doi.org/10.1016/j.gca.2007.11.019 Kelly SRA, Bromely RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807 Kleemann K, Maestrati P (2012) Pacific Lithophaga (Bivalvia, Mytilidae) from recent French expeditions with the description of two new species. Boll Malacol 48:73–102 Kleemann KH (1980) Boring bivalves and their host corals from the Great Barrier Reef. J. Molluscan Stud 46:13–54. https://doi.org/10.1093/oxfordjournals.mollus.a065519 Kleemann KH (1984) Lithophaga (Bivalvia) from dead coral from the Great Barrier Reef, Australia. J Molluscan Stud 50:192–230. https://doi.org/10.1093/oxfordjournals.mollus.a065864 Kleemann KH (1995) Association of coral and boring bivalves: Lizard Island (Great Barrier Reef, Australia) versus Safaga (N Red Sea). Beitr Paläontol 20:31–39 Kleemann KH (2009) Gastrochaenolites hospitium isp. Nov., trace fossil by a coral-associated boring bivalve from the Eocene and Miocene of Austria. Geol Carpath 60:339–342. https://doi.org/10.2478/v10096-009-0025-0 Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Exp mar biol Ecol 150:163−182. https://doi.org/10.1016/0022-0981(91)90066-6 Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34. https://doi.org/10.1007/BF02562564 Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145. https://doi.org/10.1007/s00338-006-0169-7 Márquez F, Frizzera AC, Vázquez N (2017) Environment-specific shell shape variation in the boring mytilid Leiosolenus patagonicus. Mar Biol Res 13:246–252. https://doi.org/10.1080/17451000.2016.1248848 Marshall JF, Tsuji Y, Matsuda H, Davies PJ, Iryu Y, Honda N, Satoh Y (1998) Quaternary and tertiary subtropical carbonate platform development on the continental margin of southern Queensland, Australia. In: Camoin GF, Davies PJ (eds) Reefs and carbonate platforms in the Pacific and Indian oceans. Spec Pub Int Ass Sediment 25:163–195. https://doi.org/10.1002/9781444304879.ch9 Matsuda S (1989) Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7:185–195. https://doi.org/10.1007/BF00301597 Matsuda S, Iryu Y (2011) Rhodoliths from deep fore-reef to shelf areas around Okinawa-jima, Ryukyu Islands, Japan. Mar Geol 282:215–230. https://doi.org/10.1016/j.margeo.2011.02.013 Matsuda S, Nohara M (1994) Radiocarbon ages of rhodoliths on the deep forereef to insular shelves around Okinawa-jima, Ryukyu Islands. Bull Coll Edu Univ Ryukyus 44:185–193 (in Japanese with English abstract) Mueller B, de Goeij JM, Vermeij MJA, Mulders Y, van der Ent E, Ribes M, van Duyl FC (2014) Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLoS One 9(2): e90152. https://doi.org/10.1371/journal.pone.0090152 Nebelsick JH, Bassi D, Rasser M (2011) Microtaphofacies: exploring the potential for taphonomic analysis in carbonates. In: Allison PA, Bottjer DJ (eds) Taphonomy. Process and bias through time. Topics in Geobiology 32. Springer, Berlin, pp 337–374. https://doi.org/10.1007/978-90-481-8643-3_9 Owada M, (2007) Functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Marine Biology 150 (5):853–860. Owada M (2009) Organic sheets in the shells of endolithic mytilids (Bivalvia: Mytilidae). Paleont Res 13:159–166. https://doi.org/10.2517/1342-8144-13.2.159 Owada M (2015) Functional phenotypic plasticity of the endolithic mytilid Leiosolenus curtus (Lischke, 1874) (Bivalvia: Mytilidae). Molluscan Res 35:188–195. https://doi.org/10.1080/13235818.2015.1052129 Owada M, Hoeksema BW (2011) Molecular phylogeny and shell microstructure of Fungiacava eilatensis Goreau et al. 1968, boring into mushroom corals (Scleractinia: Fungiidae), in relation to other mussels (Bivalvia: Mytilidae). Contrib Zool 80:169–178 Peharda M, Puljas S, Chauvaud L, Schöne BR, Ezgeta-Balić D, Thébault J (2015) Growth and longevity of Lithophaga lithophaga: what can we learn from shell structure and stable isotope composition? Mar Biol 162:1531–1540. https://doi.org/10.1007/s00227-015-2690-0 Perry CT (1996) Distribution and abundance of macroborers in an upper Miocene reef system, Mallorca, Spain: implications for reef development and framework destruction. Palaios 11:40–56. https://doi.org/10.2307/3515115 Perry CT (1998) Macroborers within coral framework at Discovery Bay, North Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17:277–287. https://doi.org/10.1007/s003380050129 Perry CT (2000) Macroboring of Pleistocene coral communities, Falmouth formation, Jamaica. Palaios 15:483–491. https://doi.org/10.2307/3515517 Perry CT, Bertling M (2000) Temporal and spatial patterns of coral reef macroboring since the Mesozoic. In: Insalaco E, Skelton P, Palmer T (eds) Carbonate platform systems: components and interactions. Geol Soc London Spec Publ 178:33–50. https://doi.org/10.1144/GSL.SP.2000.178.01.04 Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868. https://doi.org/10.1007/s00338-012-0901-4 Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Sci Rev 86:106–144. https://doi.org/10.1016/j.earscirev.2007.08.006 Printrakoon C, Yeemin T, Valentich-Scott P (2016) Ecology of endolithic bivalve mollusks from Ko Chang, Thailand. Zool Stud 55:e50. https://doi.org/10.6620/ZS.2016.55-50 Reid PR, Macintyre IG (1988) Foraminiferal-algal nodules from the eastern Caribbean: growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios 3:424–435. https://doi.org/10.2307/3514788 Rivera MG, Riosmena-Rodriguez R, Foster MS (2004) Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Cienc mar 30:235−249. https://doi.org/10.7773/cm.v30i12.104 Santos A, Mayoral E, Bromley RG (2011) Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54:535–545. https://doi.org/10.1111/j.1475-4983.2011.01040.x Savazzi E (1999) Boring, nestling and tube-dwelling bivalves. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, Chichester, pp 205–237 Schröder-Adams CJ, Boyd R, Ruming K, Sandstrom M (2008) Influence of sediment transport dynamics and ocean floor morphology on benthic foraminifera, offshore Fraser Island, Australia. Mar Geol 254:47–61. https://doi.org/10.1016/j.margeo.2008.05.002 Seilacher A (1964) Biogenic sedimentary structures. In: Imbrie J, Newell N (eds) Approaches to palaeoecology. Wiley, New York, pp 296–316. https://doi.org/10.1007/978-1-4020-3609-5_29 Silva CM, da Cachão M, Rebelo AC, Johnson ME, Baarli BG, Santos A (2019) Paleoenvironment and taphonomy of lower Miocene bivalve and macroid assemblages: the Lagos biocalcarenite (Lagos-Portimão formation, southern Portugal). Facies 65:6. https://doi.org/10.1007/s10347-018-0550-3 Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. J Geol 66:114–150 Somaya MT, Abdel Razek FA, Khafage AR, Omar HA, El-Deeb RS (2018) Biometric variables and relative growth of the date mussel Lithophaga lithophaga (L., 1758) (Bivalvia: Mytilidae) from the eastern Mediterranean Sea, Egypt. Egypt J Aquat Biol Fish 22(5):241–248. https://doi.org/10.21608/EJABF.2018.22062 Steller DL, Hernandez M, Riosmena-Rodriguez R, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Cienc Mar 33:441–456. https://doi.org/10.7773/cm.v33i4.1255 Taylor, AM, Goldring, R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc Lond 150:141–148. https://doi.org/10.1144/gsjgs.150.1.0141 Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth-Sci Rev 62:1–103. https://doi.org/10.1016/S0012-8252(02)00131-9 Tompkins PA, Steller DL (2016) Living carbonate habitats in temperate California (USA) waters: distribution, growth, and disturbance of Santa Catalina Island rhodoliths. Mar Ecol Progr Ser 560:135–145. https://doi.org/10.3354/meps11919 Tsuji Y (1993) Tide influenced high energy environments and rhodolith-associated carbonate deposition on the outer shelf and slope off Miyako Islands, southern Ryukyu Island arc, Japan. Mar Geol 113:255–271. https://doi.org/10.1016/0025-3227(93)90021-M Wilson MA, Palmer TJ (1998) The earliest Gastrochaenolites (early Pennsylvanian, Arkansas, USA): an upper Paleozoic bivalve boring? J Paleontol 72:769–772. https://doi.org/10.1017/S0022336000040464 Wizemann A, Nandini SD, Stuhldreier I, Sánchez-Noguera C, Wisshak M, Westphal H, Rixen T, Wild C, Reymond CE (2018) Rapid bioerosion in a tropical upwelling coral reef. PLoS One 13(9):e0202887. https://doi.org/10.1371/journal.pone.0202887