Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c = 1 Matrix Models

Sara Pasquetti1, Ricardo Schiappa2
1Theory Division, Department of Physics, CERN, 1211 Geneva 23, Switzerland
2Departamento de Matemática, Instituto Superior Técnico, CAMGSD, Av. Rovisco Pais 1, 1049–001, Lisbon, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rept. 254, 1 (1995) arXiv:hep-th/9306153

David F.: Phases of the large N matrix model and nonperturbative effects in 2D gravity. Nucl. Phys. B 348, 507 (1991)

David F.: Nonperturbative effects in matrix models and vacua of two-dimensional gravity. Phys. Lett. B 302, 403 (1993) arXiv:hep-th/9212106

Shenker, S.H.: The strength of nonperturbative effects in string theory. In: Cargèse Workshop on Random Surfaces, Quantum Gravity and Strings (1990)

Polchinski J.: Combinatorics of boundaries in string theory. Phys. Rev. D 50, 6041 (1994) arXiv:hep-th/9407031

Alexandrov S.Yu., Kazakov V.A., Kutasov D.: Nonperturbative effects in matrix models and D-Branes. JHEP 0309, 057 (2003) arXiv:hep-th/0306177

Dijkgraaf R., Vafa C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3 (2002) arXiv:hep-th/0206255

Mariño M.: Chern–Simons theory, matrix integrals, and perturbative three-manifold invariants. Commun. Math. Phys. 253, 25 (2004) arXiv:hep-th/ 0207096

Aganagic M., Klemm A., Mariño M., Vafa C.: Matrix model as a mirror of Chern–Simons theory. JHEP 0402, 010 (2004) arXiv:hep-th/0211098

Mariño M.: Open string amplitudes and large-order behavior in topological string theory. JHEP 0803, 060 (2008) arXiv:hep-th/0612127

Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009) arXiv:0709.1453[hep-th]

Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Topological open strings on orbifolds, arXiv:0807.0597[hep-th]

Mariño M., Schiappa R., Weiss M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Number Theor. Phys. 2, 349 (2008) arXiv:0711.1954[hep-th]

Mariño M.: Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. JHEP 0812, 114 (2008) arXiv:0805.3033[hep-th]

Mariño, M., Schiappa, R., Weiss, M.: Multi-instantons and multi-cuts. J. Math. Phys. (2010, in press). arXiv:0809.2619[hep-th]

Hanada M., Hayakawa M., Ishibashi N., Kawai H., Kuroki T., Matsuo Y., Tada T.: Loops versus matrices: the nonperturbative aspects of noncritical string. Prog. Theor. Phys. 112, 131 (2004) arXiv:hep-th/0405076

Ishibashi N., Yamaguchi A.: On the chemical potential of D-instantons in c = 0 noncritical string theory. JHEP 0506, 082 (2005) arXiv:hep-th/0503199

Bessis D., Itzykson C., Zuber J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1, 109 (1980)

Eynard, B., Mariño, M.: A holomorphic and background independent partition function for matrix models and topological strings. arXiv:0810.4273[hep-th]

Caporaso N., Griguolo L., Mariño M., Pasquetti S., Seminara D.: Phase transitions, double-scaling limit, and topological strings. Phys. Rev. D 75, 046004 (2007) arXiv:hep-th/0606120

Ooguri H., Strominger A., Vafa C.: Black hole attractors and the topological string. Phys. Rev. D 70, 106007 (2004) arXiv:hep-th/0405146

Zinn-Justin J.: Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation. Phys. Rept. 70, 109 (1981)

Gopakumar R., Vafa C.: Topological gravity as large N topological gauge theory. Adv. Theor. Math. Phys. 2, 413 (1998) arXiv:hep-th/9802016

Gopakumar, R., Vafa, C.: M-theory and topological strings 1. arXiv:hep-th/9809187

Gross D.J., Miljkovic N.: A nonperturbative solution of d = 1 string theory. Phys. Lett. B 238, 217 (1990)

Matsuo Y.: Nonperturbative effect in c = 1 noncritical string theory and Penner model. Nucl. Phys. B 740, 222 (2006) arXiv:hep-th/0512176

Schwinger J.H.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

Chadha S., Olesen P.: On Borel singularities in quantum field theory. Phys. Lett. B 72, 87 (1977)

Bender C.M., Wu T.T.: Anharmonic oscillator 2: a study of perturbation theory in large order. Phys. Rev. D 7, 1620 (1973)

Collins J.C., Soper D.E.: Large order expansion in perturbation theory. Ann. Phys. 112, 209 (1978)

Dunne, G.V.: Heisenberg–Euler effective Lagrangians: basics and extensions. In: Ian Kogan Memorial Collection “From Fields to Strings: Circumnavigating Theoretical Physics” (2004). arXiv:hep-th/0406216

Kim S.P., Page D.N. (2006) Schwinger pair production in electric and magnetic fields. Phys. Rev. D 73, 065020 (2006) arXiv:hep-th/0301132

Dunne G.V., Schubert C.: Closed form two loop Euler–Heisenberg Lagrangian in a selfdual background. Phys. Lett. B 526, 55 (2002) arXiv:hep-th/0111134

Dunne G.V., Schubert C.: Two loop selfdual Euler–Heisenberg Lagrangians 1, real part and helicity amplitudes. JHEP 0208, 053 (2002) arXiv:hep-th/0205004

Dunne G.V., Schubert C.: Two loop selfdual Euler–Heisenberg Lagrangians 2, imaginary part and Borel analysis. JHEP 0206, 042 (2002) arXiv:hep-th/0205005

Popov V.S.: Pair production in a variable external field (quasiclassical approximation). Sov. Phys. JETP 34, 709 (1972)

Vonk, M.: A mini-course on topological strings. arXiv:hep-th/0504147

Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994) arXiv:hep-th/9309140

Ghoshal D., Vafa C.: c =  1 String as the Topological Theory of the Conifold. Nucl. Phys. B 453, 121 (1995) arXiv:hep-th/9506122

Klebanov, I.R.: String theory in two-dimensions. In: Trieste Spring School on string theory and quantum gravity (1991). arXiv:hep-th/9108019

Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arXiv:hep-th/9906046

Katz S., Klemm A., Vafa C.: M-theory, topological strings and spinning black holes. Adv. Theor. Math. Phys. 3, 1445 (1999) arXiv:hep-th/9910181

Gross D.J., Klebanov I.R.: One-dimensional string theory on a circle. Nucl. Phys. B 344, 475 (1990)

Gopakumar, R., Vafa, C.: M-theory and topological strings 2. arXiv:hep-th/9812127

Mariño M., Moore G.W.: Counting higher genus curves in a Calabi–Yau manifold. Nucl. Phys. B 543, 592 (1999) arXiv:hep-th/9808131

Faber C., Pandharipande R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139, 173 (2000) arXiv:math/9810173

Gopakumar R., Vafa C. (1999) On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415 (1999) arXiv:hep-th/9811131

Witten E.: Chern–Simons gauge theory as a string theory. Prog. Math. 133, 637 (1995) arXiv:hep-th/9207094

Brézin E., Itzykson C., Parisi G., Zuber J.B.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)

Mariño, M.: Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165

Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Number Theor. Phys. 1, 347 (2007) arXiv:math-ph/0702045

Eynard, B., Orantin, N.: Algebraic methods in random matrices and enumerative geometry. arXiv:0811.3531[math-ph]

Macdonald I.G.: The volume of a compact Lie group. Invent. Math. 56, 93 (1980)

Penner R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27, 35 (1988)

Distler, J., Vafa, C.: The Penner model and d = 1 string theory. In: Cargèse workshop on random surfaces, quantum gravity and strings (1990)

Distler J., Vafa C.: Critical matrix model at c = 1. Mod. Phys. Lett. A 6, 259 (1991)

Chaudhuri S., Dykstra H., Lykken J.D.: The Penner matrix model and c = 1 strings. Mod. Phys. Lett. A 6, 1665 (1991)

Ambjørn J., Kristjansen C.F., Makeenko Yu.: Generalized Penner models to all genera. Phys. Rev. D 50, 5193 (1994) arXiv:hep-th/9403024

Mariño M.: Chern–Simons theory and topological strings. Rev. Mod. Phys. 77, 675 (2005) arXiv:hep-th/0406005

Tierz M.: Soft matrix models and Chern–Simons partition functions. Mod. Phys. Lett. A 19, 1365 (2004) arXiv:hep-th/0212128

Aganagic, M., Vafa, C.: Mirror symmetry, D-Branes and counting holomorphic discs. arXiv:hep-th/0012041

Aganagic M., Klemm A., Vafa C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002) arXiv:hep-th/0105045

Fateev, V., Zamolodchikov, A.B., Zamolodchikov, A.B.: Boundary Liouville field theory I: boundary state and boundary two-point function. arXiv:hep-th/0001012

Zamolodchikov, A.B., Zamolodchikov, A.B.: Liouville field theory on a pseudosphere. arXiv:hep-th/0101152

Hosomichi K.: Bulk-boundary propagator in Liouville theory on a disc. JHEP 0111, 044 (2001) arXiv:hep-th/0108093

Martinec, E.J.: The annular report on non-critical string theory. arXiv:hep-th/0305148

Seiberg N., Shih D.: Branes, rings and matrix models in minimal (Super)String Theory. JHEP 0402, 021 (2004) arXiv:hep-th/0312170

Alexandrov S.Y., Kostov I.K.: Time-dependent backgrounds of 2D string theory: nonperturbative effects. JHEP 0502, 023 (2005) arXiv:hep-th/0412223

Alexandrov S.: D-Branes and complex curves in c =  1 string theory. JHEP 0405, 025 (2004) arXiv:hep-th/0403116

Kazakov, V.A., Kostov, I.K.: Instantons in non-critical strings from the two-matrix model. arXiv:hep-th/0403152

Alexandrov S.: (m, n) ZZ Branes and the c = 1 Matrix Model. Phys. Lett. B 604, 115 (2004) arXiv:hep-th/0310135

Bertoldi G., Hollowood T.J.: Large N gauge theories and topological cigars. JHEP 0704, 078 (2007) arXiv:hep-th/0611016

Adamchik, V.S.: Contributions to the theory of the Barnes function. arXiv: math/0308086[math.CA]

Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, London (2007)

Berry M.V., Howls C.J.: Hyperasymptotics. Proc. R. Soc. Lond. A 430, 653 (1990)

Boyd J.P.: The Devil’s invention: asymptotic, superasymptotic and hyperasymptotic series. Acta Appl. Math. 56, 1 (1999)

Berry M.V., Howls C.J.: Hyperasymptotics for integrals with saddles. Proc. R. Soc. Lond. A 434, 657 (1991)

Boyd W.G.C.: Error bounds for the method of steepest descents. Proc. R. Soc. Lond. A 440, 493 (1993)

Friot, S., Greynat, D.: Non-perturbative asymptotic improvement of perturbation theory and Mellin–Barnes representation. arXiv:0907.5593[hep-th]

Paris R.B., Kaminski D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press, Cambridge (2001)

Boyd W.G.C.: Gamma function asymptotics by an extension of the method of steepest descents. Proc. R. Soc. Lond. A 447, 609 (1994)

Berry M.V.: Infinitely many stokes smoothings in the gamma function. Proc. R. Soc. Lond. A 434, 465 (1991)

Koshkin, S.: Quantum Barnes function as the partition function of the resolved conifold. arXiv:0710.2929[math.AG]

Maldacena J.M., Moore G.W., Seiberg N., Shih D.: Exact vs. semiclassical target space of the minimal string. JHEP 0410, 020 (2004) arXiv:hep-th/0408039

Eynard B.: Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. JHEP 0903, 003 (2009) arXiv:0802.1788[math-ph]

Berry M.V.: Uniform asymptotic smoothing of Stokes’ discontinuities. Proc. R. Soc. Lond. A 422, 7 (1989)

Chapman S.J.: On the non-universality of the error function in the smoothing of stokes discontinuities. Proc. R. Soc. Lond. A 452, 2225 (1996)

Bonnet G., David F., Eynard B.: Breakdown of universality in multicut matrix models. J. Phys. A 33, 6739 (2000) arXiv:cond-mat/0003324

Maximon L.C.: The dilogarithm function for complex argument. Proc. R. Soc. Lond. A 459, 2807 (2003)

Vepštas L.: An Efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions. Numer. Algorithm 47, 211 (2008) arXiv:math/0702243

Ooguri H., Vafa C.: Summing up D-Instantons. Phys. Rev. Lett. 77, 3296 (1996) arXiv:hep-th/9608079

Collinucci, A., Soler, P., Uranga, A.M.: Nonperturbative effects and wall-crossing from topological strings. arXiv:0904.1133[hep-th]

Dijkgraaf R., Moore G.W., Plesser R.: The partition function of 2D string theory. Nucl. Phys. B 394, 356 (1993) arXiv:hep-th/9208031

Kazakov V., Kostov I.K., Kutasov D.: A matrix model for the two-dimensional black hole. Nucl. Phys. B 622, 141 (2002) arXiv:hep-th/0101011

Sauzin, D.: Resurgent functions and splitting problems. arXiv:0706.0137 [math.DS]

Bryan J., Pandharipande R.: BPS states of curves in Calabi–Yau Threefolds. Geom. Topol. 5, 287 (2001) arXiv:math/0009025

Bryan J., Katz S., Leung N.C.: Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds. J. Algebraic Geom. 10, 549 (2001) arXiv:math/9911056

Karp D., Liu C.-C.M., Mariño M.: The local Gromov–Witten invariants of configurations of rational curves. Geom. Topol. 10, 115 (2006) arXiv:math/0506488

Aganagic M., Jafferis D., Saulina N.: Branes, black holes and topological strings on toric Calabi–Yau manifolds. JHEP 0612, 018 (2006) arXiv:hep-th/0512245

Haghighat B., Klemm A., Rauch M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008) arXiv:0809.1674[hep-th]