Boosting membranes for CO2 capture toward industrial decarbonization
Tài liệu tham khảo
Alalwan, 2021, CO2 capturing methods: chemical looping combustion (CLC) as a promising technique, Sci. Total Environ., 788, 10.1016/j.scitotenv.2021.147850
Ansaloni, 2015, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations, J. Membr. Sci., 490, 18, 10.1016/j.memsci.2015.03.097
Araújo, 2020, Cellulose-based carbon molecular sieve membranes for gas separation: a review, Molecules, 25, 3532, 10.3390/molecules25153532
Baker, 2002, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393, 10.1021/ie0108088
Bastani, 2013, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review, J. Ind. Eng. Chem., 19, 375, 10.1016/j.jiec.2012.09.019
Bernardo, 2009, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48, 4638, 10.1021/ie8019032
Brunetti, 2022, Long-term performance of highly selective carbon hollow fiber membranes for biogas upgrading in the presence of H2S and water vapor, Chem. Eng. J., 448, 10.1016/j.cej.2022.137615
Chai, 2022, Review of carbon capture absorbents for CO2 utilization, Greenh. Gas Sci. Technol., 12, 394, 10.1002/ghg.2151
Chen, 2021, Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine, J. Membr. Sci., 628, 10.1016/j.memsci.2021.119215
Cheng, 2018, Mixed matrix membranes for natural gas upgrading: current status and opportunities, Ind. Eng. Chem. Res., 57, 4139, 10.1021/acs.iecr.7b04796
Chi, 2013, Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes, J. Membr. Sci., 443, 54, 10.1016/j.memsci.2013.04.049
Chu, 2018, Process simulation and cost evaluation of carbon membranes for CO2 removal from high-pressure natural gas, Membranes, 8, 10.3390/membranes8040118
Chu, 2019, Mathematical modeling and process parametric study of CO2 removal from natural gas by hollow fiber membranes, Chem. Eng. Res. Des., 148, 45, 10.1016/j.cherd.2019.05.054
Datta, 2022, Rational design of mixed-matrix metal-organic framework membranes for molecular separations, Science, 376, 1080, 10.1126/science.abe0192
Dechnik, 2017, Mixed-matrix membranes, Angew. Chem. Int. Ed., 56, 9292, 10.1002/anie.201701109
Demir, 2022, MOF membranes for CO2 capture: past, present and future, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2021.100026
Du, 2012, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci., 5, 7306, 10.1039/C1EE02668B
Fang, 2020, Emission and control of flue gas pollutants in CO2 chemical absorption system – a review, Int. J. Greenh. Gas Control., 93, 10.1016/j.ijggc.2019.102904
Fang, 2019, A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator, Electrochim. Acta, 302, 207, 10.1016/j.electacta.2019.02.027
Gogotsi, 2019, The rise of mxenes, ACS Nano, 13, 8491, 10.1021/acsnano.9b06394
Guo, 2019, Mixed-matrix membranes for CO2 separation: role of the third component, J. Mater. Chem. A, 7, 24738, 10.1039/C9TA09012F
Guo, 2021, Recent advances in potassium-based adsorbents for CO2 capture and separation: a review, Carbon Capture Sci. Technol., 1, 10.1016/j.ccst.2021.100011
Hägg M. B., He X., Sarfaraz V., Sandru M., Kim, T.-J., 2015. CO2 capture using a membrane pilot process at cement factory in Brevik.8th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-8), Trondheim, 16-18 June.
Hägg, 2017, Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process, Energy Procedia, 114, 6150, 10.1016/j.egypro.2017.03.1752
Haider, 2018, CO2 separation with carbon membranes in high pressure and elevated temperature applications, Sep. Purif. Technol., 190, 177, 10.1016/j.seppur.2017.08.038
Han, 2021, Polymeric membranes for CO2 separation and capture, J. Membr. Sci., 628, 10.1016/j.memsci.2021.119244
Han, 2019, Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas, J. Membr. Sci., 575, 242, 10.1016/j.memsci.2019.01.024
Han, 2018, Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacuum operation, J. Membr. Sci., 567, 261, 10.1016/j.memsci.2018.08.061
Han, 2019, Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation, J. Membr. Sci., 573, 476, 10.1016/j.memsci.2018.12.028
He, 2018, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries, Energy Sustain. Soc., 8, 34, 10.1186/s13705-018-0177-9
He, 2022, Insight and comparison of energy-efficient membrane processes for CO2 capture from flue gases in power plant and energy-intensive industry, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2021.100020
He, 2018, Carbon molecular sieve membranes for biogas upgrading: techno-economic feasibility analysis, J. Clean. Prod., 194, 584, 10.1016/j.jclepro.2018.05.172
He, 2014, Hybrid FSC membrane for CO2 removal from natural gas: experimental, process simulation, and economic feasibility analysis, AlChE J., 60, 4174, 10.1002/aic.14600
He, 2021, Green hydrogen enrichment with carbon membrane processes: techno-economic feasibility and sensitivity analysis, Sep. Purif. Technol., 276, 10.1016/j.seppur.2021.119346
He, 2017, Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas, Int. J. Greenh. Gas Control., 64, 323, 10.1016/j.ijggc.2017.08.007
Hong, 2022, A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2022.100044
Hu, 2006, CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen, J. Membr. Sci., 281, 130, 10.1016/j.memsci.2006.03.030
Hudiono, 2011, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Membr. Sci., 370, 141, 10.1016/j.memsci.2011.01.012
Janakiram, 2020, Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: effect of 2D filler properties, J. Membr. Sci., 616, 10.1016/j.memsci.2020.118626
Janakiram, 2019, Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture, ACS Appl. Mater. Interfaces, 11, 33302, 10.1021/acsami.9b09920
Jecha, 2013, Biogas upgrading technologies: state of art review in European region, Chem. Eng. Trans., 35, 517
Jiang, 2019, Fine tuning the hydrophobicity of counter-anions to tailor pore size in porous all-poly(ionic liquid) membranes, Polym. Int., 68, 1566, 10.1002/pi.5764
Jiao, 2021, MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation, ACS Appl. Mater. Interfaces, 13, 18380, 10.1021/acsami.1c03737
Karimi, 2022, Biomass/biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions, J. CO2 Util., 57, 10.1016/j.jcou.2022.101890
Karousos, 2020, Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2, Sep. Purif. Technol., 253, 10.1016/j.seppur.2020.117473
Khan, 2022, Special issue - New trends in membrane technology for carbon capture, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2022.100051
Kim, 2004, Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. B Polym. Phys., 42, 4326, 10.1002/polb.20282
Kim, 2013, Separation performance of PVAm composite membrane for CO2 capture at various pH levels, J. Membr. Sci., 428, 218, 10.1016/j.memsci.2012.10.009
Koros, 2017, Materials for next-generation molecularly selective synthetic membranes, Nat. Mater., 16, 289, 10.1038/nmat4805
Lei, 2020, Carbon membranes for CO2 removal: status and perspectives from materials to processes, Chem. Eng. J., 401, 10.1016/j.cej.2020.126084
Lei, 2021, Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process, J. Membr. Sci., 627, 10.1016/j.memsci.2021.119241
Lei, 2021, Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation, Nat. Commun., 12, 268, 10.1038/s41467-020-20628-9
Li, 2017, An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity, Adv. Mater., 29, 10.1002/adma.201704210
Li, 2013, Advances in CO2 capture technology: a patent review, Appl. Energy, 102, 1439, 10.1016/j.apenergy.2012.09.009
Li, 2022, A review of polymer-derived carbon molecular sieve membranes for gas separation, New Carbon Mater., 37, 484, 10.1016/S1872-5805(22)60613-9
Li, 2022, Simulation of H2S and CO2 removal from IGCC syngas by cryogenic distillation, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2021.100012
Li, 2023, Preparation and characterization of polyvinylalcohol/polysulfone composite membranes for enhanced CO2/N2 separation, Polymers, 15, 124, 10.3390/polym15010124
Luque-Alled, 2021, PIM-1/holey graphene oxide mixed matrix membranes for gas separation: unveiling the role of holes, ACS Appl. Mater. Interfaces, 13, 55517, 10.1021/acsami.1c15640
Lyon, 2022, Climate change research and action must look beyond 2100, Glob. Change Biol., 28, 349, 10.1111/gcb.15871
Marzeion, 2018, Limited influence of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305, 10.1038/s41558-018-0093-1
Merkel, 2010, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Membr. Sci., 359, 126, 10.1016/j.memsci.2009.10.041
Minnick, 2016, Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects, J. Phys. Chem. B, 120, 7906, 10.1021/acs.jpcb.6b04309
Naguib, 2014, 25th anniversary article: mXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138
Nellepalli, 2019, Imidazolium-based copoly(ionic liquid) membranes for CO2/N2 separation, Ind. Eng. Chem. Res., 58, 2017, 10.1021/acs.iecr.8b05093
Nikolaeva, 2017, Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO2 capture from flue gas, J. Mater. Chem. A, 5, 19808, 10.1039/C7TA05171A
Nikolaeva, 2018, The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation, J. Membr. Sci., 564, 552, 10.1016/j.memsci.2018.07.057
Noble, 2006, 411
Norahim, 2018, Recent membrane developments for CO2 separation and capture, Chem. Eng. Technol., 41, 211, 10.1002/ceat.201700406
O'Harra, 2021, Design and gas separation performance of imidazolium poly(ILs) containing multivalent imidazolium fillers and crosslinking agents, Polymers, 13
Park, 2007, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254, 10.1126/science.1146744
Rea, 2019, Models for facilitated transport membranes: a review, Membranes, 9, 26, 10.3390/membranes9020026
Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030
Sandru, 2013, Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, Energy Procedia, 37, 6473, 10.1016/j.egypro.2013.06.577
Shaw, 2022, The development of carbon capture and storage (CCS) in India: a critical review, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2022.100036
Suleman, 2016, Plasticization and swelling in polymeric membranes in CO2 removal from natural gas, Chem. Eng. Technol., 39, 1604, 10.1002/ceat.201500495
Sun, 2020, Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation, Sep. Purif. Technol., 251, 10.1016/j.seppur.2020.117370
Tengku Hassan, 2022, Insights on cryogenic distillation technology for simultaneous CO2 and H2S removal for sour gas fields, Molecules, 27, 1424, 10.3390/molecules27041424
Wang, 2021, ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation, J. Membr. Sci., 630, 10.1016/j.memsci.2021.119323
Weiland, 2010, Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol., 85, 849, 10.1007/s00253-009-2246-7
Wu, 2014, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci., 465, 78, 10.1016/j.memsci.2014.04.023
Xu, 2021, Constructing thin and cross-linked polyimide membranes by interfacial reaction for efficient CO2 separation, ACS Sustain. Chem. Eng., 9, 5546, 10.1021/acssuschemeng.0c08779
Zainuddin, 2022, Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture, J. CO2 Util., 62, 10.1016/j.jcou.2022.102094
Zhang, 2022, Recent advances in poly(ionic liquids) membranes for CO2 separation, Sep. Purif. Technol., 299, 10.1016/j.seppur.2022.121784
Zhao, 2015, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal–organic frameworks, Ind. Eng. Chem. Res., 54, 5139, 10.1021/ie504786x
Zhao, 2013, Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules, J. Mater. Chem. A, 1, 246, 10.1039/C2TA00247G