Boosting membranes for CO2 capture toward industrial decarbonization

Carbon Capture Science & Technology - Tập 7 - Trang 100117 - 2023
Danlin Chen1, Kaifang Wang1,2, Ziyi Yuan1,2, Zhihong Lin1,2, Manman Zhang1,2, Yang Li1,2, Jiali Tang1,2, Zhicong Liang1,2, Ying Li1,2, Liu Chen1,2, Longjie Li1,2, Xinyi Huang1,2, Siyu Pan1,2, Zhongtai Zhu1, Zihao Hong1, Xuezhong He1,2,3
1Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
2The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
3Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China

Tài liệu tham khảo

Alalwan, 2021, CO2 capturing methods: chemical looping combustion (CLC) as a promising technique, Sci. Total Environ., 788, 10.1016/j.scitotenv.2021.147850 Ansaloni, 2015, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations, J. Membr. Sci., 490, 18, 10.1016/j.memsci.2015.03.097 Araújo, 2020, Cellulose-based carbon molecular sieve membranes for gas separation: a review, Molecules, 25, 3532, 10.3390/molecules25153532 Baker, 2002, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393, 10.1021/ie0108088 Bastani, 2013, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review, J. Ind. Eng. Chem., 19, 375, 10.1016/j.jiec.2012.09.019 Bernardo, 2009, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48, 4638, 10.1021/ie8019032 Brunetti, 2022, Long-term performance of highly selective carbon hollow fiber membranes for biogas upgrading in the presence of H2S and water vapor, Chem. Eng. J., 448, 10.1016/j.cej.2022.137615 Chai, 2022, Review of carbon capture absorbents for CO2 utilization, Greenh. Gas Sci. Technol., 12, 394, 10.1002/ghg.2151 Chen, 2021, Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine, J. Membr. Sci., 628, 10.1016/j.memsci.2021.119215 Cheng, 2018, Mixed matrix membranes for natural gas upgrading: current status and opportunities, Ind. Eng. Chem. Res., 57, 4139, 10.1021/acs.iecr.7b04796 Chi, 2013, Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes, J. Membr. Sci., 443, 54, 10.1016/j.memsci.2013.04.049 Chu, 2018, Process simulation and cost evaluation of carbon membranes for CO2 removal from high-pressure natural gas, Membranes, 8, 10.3390/membranes8040118 Chu, 2019, Mathematical modeling and process parametric study of CO2 removal from natural gas by hollow fiber membranes, Chem. Eng. Res. Des., 148, 45, 10.1016/j.cherd.2019.05.054 Datta, 2022, Rational design of mixed-matrix metal-organic framework membranes for molecular separations, Science, 376, 1080, 10.1126/science.abe0192 Dechnik, 2017, Mixed-matrix membranes, Angew. Chem. Int. Ed., 56, 9292, 10.1002/anie.201701109 Demir, 2022, MOF membranes for CO2 capture: past, present and future, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2021.100026 Du, 2012, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci., 5, 7306, 10.1039/C1EE02668B Fang, 2020, Emission and control of flue gas pollutants in CO2 chemical absorption system – a review, Int. J. Greenh. Gas Control., 93, 10.1016/j.ijggc.2019.102904 Fang, 2019, A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator, Electrochim. Acta, 302, 207, 10.1016/j.electacta.2019.02.027 Gogotsi, 2019, The rise of mxenes, ACS Nano, 13, 8491, 10.1021/acsnano.9b06394 Guo, 2019, Mixed-matrix membranes for CO2 separation: role of the third component, J. Mater. Chem. A, 7, 24738, 10.1039/C9TA09012F Guo, 2021, Recent advances in potassium-based adsorbents for CO2 capture and separation: a review, Carbon Capture Sci. Technol., 1, 10.1016/j.ccst.2021.100011 Hägg M. B., He X., Sarfaraz V., Sandru M., Kim, T.-J., 2015. CO2 capture using a membrane pilot process at cement factory in Brevik.8th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-8), Trondheim, 16-18 June. Hägg, 2017, Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process, Energy Procedia, 114, 6150, 10.1016/j.egypro.2017.03.1752 Haider, 2018, CO2 separation with carbon membranes in high pressure and elevated temperature applications, Sep. Purif. Technol., 190, 177, 10.1016/j.seppur.2017.08.038 Han, 2021, Polymeric membranes for CO2 separation and capture, J. Membr. Sci., 628, 10.1016/j.memsci.2021.119244 Han, 2019, Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas, J. Membr. Sci., 575, 242, 10.1016/j.memsci.2019.01.024 Han, 2018, Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacuum operation, J. Membr. Sci., 567, 261, 10.1016/j.memsci.2018.08.061 Han, 2019, Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation, J. Membr. Sci., 573, 476, 10.1016/j.memsci.2018.12.028 He, 2018, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries, Energy Sustain. Soc., 8, 34, 10.1186/s13705-018-0177-9 He, 2022, Insight and comparison of energy-efficient membrane processes for CO2 capture from flue gases in power plant and energy-intensive industry, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2021.100020 He, 2018, Carbon molecular sieve membranes for biogas upgrading: techno-economic feasibility analysis, J. Clean. Prod., 194, 584, 10.1016/j.jclepro.2018.05.172 He, 2014, Hybrid FSC membrane for CO2 removal from natural gas: experimental, process simulation, and economic feasibility analysis, AlChE J., 60, 4174, 10.1002/aic.14600 He, 2021, Green hydrogen enrichment with carbon membrane processes: techno-economic feasibility and sensitivity analysis, Sep. Purif. Technol., 276, 10.1016/j.seppur.2021.119346 He, 2017, Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas, Int. J. Greenh. Gas Control., 64, 323, 10.1016/j.ijggc.2017.08.007 Hong, 2022, A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2022.100044 Hu, 2006, CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen, J. Membr. Sci., 281, 130, 10.1016/j.memsci.2006.03.030 Hudiono, 2011, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Membr. Sci., 370, 141, 10.1016/j.memsci.2011.01.012 Janakiram, 2020, Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: effect of 2D filler properties, J. Membr. Sci., 616, 10.1016/j.memsci.2020.118626 Janakiram, 2019, Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture, ACS Appl. Mater. Interfaces, 11, 33302, 10.1021/acsami.9b09920 Jecha, 2013, Biogas upgrading technologies: state of art review in European region, Chem. Eng. Trans., 35, 517 Jiang, 2019, Fine tuning the hydrophobicity of counter-anions to tailor pore size in porous all-poly(ionic liquid) membranes, Polym. Int., 68, 1566, 10.1002/pi.5764 Jiao, 2021, MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation, ACS Appl. Mater. Interfaces, 13, 18380, 10.1021/acsami.1c03737 Karimi, 2022, Biomass/biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions, J. CO2 Util., 57, 10.1016/j.jcou.2022.101890 Karousos, 2020, Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2, Sep. Purif. Technol., 253, 10.1016/j.seppur.2020.117473 Khan, 2022, Special issue - New trends in membrane technology for carbon capture, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2022.100051 Kim, 2004, Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. B Polym. Phys., 42, 4326, 10.1002/polb.20282 Kim, 2013, Separation performance of PVAm composite membrane for CO2 capture at various pH levels, J. Membr. Sci., 428, 218, 10.1016/j.memsci.2012.10.009 Koros, 2017, Materials for next-generation molecularly selective synthetic membranes, Nat. Mater., 16, 289, 10.1038/nmat4805 Lei, 2020, Carbon membranes for CO2 removal: status and perspectives from materials to processes, Chem. Eng. J., 401, 10.1016/j.cej.2020.126084 Lei, 2021, Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process, J. Membr. Sci., 627, 10.1016/j.memsci.2021.119241 Lei, 2021, Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation, Nat. Commun., 12, 268, 10.1038/s41467-020-20628-9 Li, 2017, An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity, Adv. Mater., 29, 10.1002/adma.201704210 Li, 2013, Advances in CO2 capture technology: a patent review, Appl. Energy, 102, 1439, 10.1016/j.apenergy.2012.09.009 Li, 2022, A review of polymer-derived carbon molecular sieve membranes for gas separation, New Carbon Mater., 37, 484, 10.1016/S1872-5805(22)60613-9 Li, 2022, Simulation of H2S and CO2 removal from IGCC syngas by cryogenic distillation, Carbon Capture Sci. Technol., 3, 10.1016/j.ccst.2021.100012 Li, 2023, Preparation and characterization of polyvinylalcohol/polysulfone composite membranes for enhanced CO2/N2 separation, Polymers, 15, 124, 10.3390/polym15010124 Luque-Alled, 2021, PIM-1/holey graphene oxide mixed matrix membranes for gas separation: unveiling the role of holes, ACS Appl. Mater. Interfaces, 13, 55517, 10.1021/acsami.1c15640 Lyon, 2022, Climate change research and action must look beyond 2100, Glob. Change Biol., 28, 349, 10.1111/gcb.15871 Marzeion, 2018, Limited influence of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305, 10.1038/s41558-018-0093-1 Merkel, 2010, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Membr. Sci., 359, 126, 10.1016/j.memsci.2009.10.041 Minnick, 2016, Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects, J. Phys. Chem. B, 120, 7906, 10.1021/acs.jpcb.6b04309 Naguib, 2014, 25th anniversary article: mXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138 Nellepalli, 2019, Imidazolium-based copoly(ionic liquid) membranes for CO2/N2 separation, Ind. Eng. Chem. Res., 58, 2017, 10.1021/acs.iecr.8b05093 Nikolaeva, 2017, Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO2 capture from flue gas, J. Mater. Chem. A, 5, 19808, 10.1039/C7TA05171A Nikolaeva, 2018, The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation, J. Membr. Sci., 564, 552, 10.1016/j.memsci.2018.07.057 Noble, 2006, 411 Norahim, 2018, Recent membrane developments for CO2 separation and capture, Chem. Eng. Technol., 41, 211, 10.1002/ceat.201700406 O'Harra, 2021, Design and gas separation performance of imidazolium poly(ILs) containing multivalent imidazolium fillers and crosslinking agents, Polymers, 13 Park, 2007, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254, 10.1126/science.1146744 Rea, 2019, Models for facilitated transport membranes: a review, Membranes, 9, 26, 10.3390/membranes9020026 Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030 Sandru, 2013, Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, Energy Procedia, 37, 6473, 10.1016/j.egypro.2013.06.577 Shaw, 2022, The development of carbon capture and storage (CCS) in India: a critical review, Carbon Capture Sci. Technol., 2, 10.1016/j.ccst.2022.100036 Suleman, 2016, Plasticization and swelling in polymeric membranes in CO2 removal from natural gas, Chem. Eng. Technol., 39, 1604, 10.1002/ceat.201500495 Sun, 2020, Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation, Sep. Purif. Technol., 251, 10.1016/j.seppur.2020.117370 Tengku Hassan, 2022, Insights on cryogenic distillation technology for simultaneous CO2 and H2S removal for sour gas fields, Molecules, 27, 1424, 10.3390/molecules27041424 Wang, 2021, ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation, J. Membr. Sci., 630, 10.1016/j.memsci.2021.119323 Weiland, 2010, Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol., 85, 849, 10.1007/s00253-009-2246-7 Wu, 2014, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci., 465, 78, 10.1016/j.memsci.2014.04.023 Xu, 2021, Constructing thin and cross-linked polyimide membranes by interfacial reaction for efficient CO2 separation, ACS Sustain. Chem. Eng., 9, 5546, 10.1021/acssuschemeng.0c08779 Zainuddin, 2022, Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture, J. CO2 Util., 62, 10.1016/j.jcou.2022.102094 Zhang, 2022, Recent advances in poly(ionic liquids) membranes for CO2 separation, Sep. Purif. Technol., 299, 10.1016/j.seppur.2022.121784 Zhao, 2015, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal–organic frameworks, Ind. Eng. Chem. Res., 54, 5139, 10.1021/ie504786x Zhao, 2013, Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules, J. Mater. Chem. A, 1, 246, 10.1039/C2TA00247G