Tăng cường phản ứng miễn dịch bằng các đoạn chuỗi không thay đổi thông qua sự liên kết với vùng không liên kết peptide của phân tử phức hợp chính tương hợp lớp II

BMC Immunology - Tập 13 - Trang 1-9 - 2012
Fangfang Chen1, Fantao Meng1, Ling Pan1, Fazhi Xu1, Xuelan Liu1, Weiyi Yu1
1Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, China

Tóm tắt

Dựa trên sự liên kết của chuỗi không thay đổi (Ii) với các phân tử phức hợp tương hợp chính (MHC) lớp II để tạo thành các phức hợp, các đoạn Ii-hybrid, cấu trúc Ii-key liên kết một epitop, hoặc peptide chuỗi không thay đổi liên kết với MHC lớp II (CLIP) được thay thế bằng một epitop đã được sử dụng để tăng cường phản ứng miễn dịch. Hiện tại, vẫn chưa rõ liệu các miền nội bào và xuyên màng của đoạn Ii có liên kết với vùng liên kết không phải peptide (PBR) của MHC hay không, và do đó ảnh hưởng đến phản ứng miễn dịch. Để điều tra vai trò tiềm năng của các đoạn Ii trong phản ứng miễn dịch thông qua các phức hợp MHC II/peptide, một số hybrid chứa các đoạn Ii và một đa epitop (F306) từ protein fusion của virus Newcastle bệnh (F) đã được xây dựng, và hiệu quả liên kết của chúng với các phân tử MHC II cùng với việc sản xuất kháng thể đặc hiệu đã được so sánh bằng cách sử dụng hiển vi huỳnh quang, sự kết tủa miễn dịch, phương pháp blotting western và thí nghiệm trên động vật. Một trong các hybrid Ii-segment/F306, chứa ND (Asn–Asp) bên ngoài F306 trong cấu trúc Ii-key (Ii-key/F306/ND), không đồng nhất với các phân tử MHC II trên màng plasma cũng như không liên kết với các phân tử MHC II để tạo thành các phức hợp. Tuy nhiên, việc kích thích chuột với cấu trúc này đã sản xuất được huyết thanh kháng thể cao gấp 4 lần so với F306 đơn thuần. Hai hybrid Ii-segment/F306 khác, trong đó các miền xuyên màng và nội bào của Ii được liên kết với cấu trúc này (Cyt/TM/Ii-key/F306/ND), đã đồng nhất một phần trên màng plasma với các phân tử MHC lớp II và liên kết yếu với các phân tử MHC II để tạo thành các phức hợp. Chúng đã thúc đẩy chuột sản xuất huyết thanh kháng thể cao hơn khoảng 9 lần so với F306 đơn thuần. Hơn nữa, một hybrid Ii/F306 (F306 thay thế CLIP) đã đồng nhất tốt với các phân tử MHC II trên màng để tạo thành các phức hợp, mặc dù nó chỉ làm tăng huyết thanh kháng thể khoảng 3 lần so với F306 đơn thuần. Những kết quả này gợi ý rằng các đoạn Ii cải thiện phản ứng miễn dịch đặc hiệu bằng cách liên kết với PBR không phải peptide trên các phân tử MHC lớp II và cho phép đồng nhất màng với các phân tử MHC II, dẫn đến sự hình thành các phức hợp MHC II/peptide tương đối ổn định trên màng plasma và tín hiệu truyền dẫn.

Từ khóa

#chuỗi không thay đổi #phức hợp tương hợp chính #phản ứng miễn dịch #MHC lớp II #kháng thể #đoạn hybrid #epitop

Tài liệu tham khảo

Strubin M, Berte C, Mach B: Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J. 1986, 5: 3483-3488. Roche PA, Cresswell P: Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature. 1990, 345: 615-618. 10.1038/345615a0. Lindner R: Transient surface delivery of invariant chain-MHC II complexes via endosomes: a quantitative study. Traffic. 2002, 3: 133-146. 10.1034/j.1600-0854.2002.030206.x. Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997, 9: 10-16. 10.1016/S0952-7915(97)80153-7. Saudrais C, Spehner D, de la Salle H, Bohbot A, Cazenave JP, Goud B, Hanau D, Salamero J: Intracellular pathway for the generation of functional MHC class II peptide complexes in immature human dendritic cells. J Immunol. 1998, 160: 2597-2607. Dugast M, Toussaint H, Dousset C, Benaroch P: AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J Biol Chem. 2005, 280: 19656-19664. 10.1074/jbc.M501357200. McCormick PJ, Martina JA, Bonifacino JS: Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc Natl Acad Sci USA. 2005, 102: 7910-7915. 10.1073/pnas.0502206102. Schutze MP, Peterson PA, Jackson MR: An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994, 13: 1696-1705. Stumptner P, Benaroch P: Interaction of MHC class II molecules with the invariant chain: role of the invariant chain (81–90) region. EMBO J. 1997, 16: 5807-5818. 10.1038/sj.emboj.7590555. Romagnoli P, Germain RN: The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J Exp Med. 1994, 180: 1107-1113. 10.1084/jem.180.3.1107. Hsing LC, Rudensky AY: The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev. 2005, 207: 229-241. 10.1111/j.0105-2896.2005.00310.x. Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED: Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev. 2005, 207: 242-260. 10.1111/j.0105-2896.2005.00306.x. Benaroch P, Yilla M, Raposo G, Ito K, Miwa K, Geuze HJ, Ploegh HL: How MHC class II molecules reach the endocytic pathway. EMBO J. 1995, 14: 37-49. Koch N, Lauer W, Habicht J, Dobberstein B: Primary structure of thegene for the murineIa antigen-associated invariant chains(Ii). An alternatively spliced exon encodes a cysteine-rich domain highly homologous to a repetitive sequence of thyroglobulin. EMBO J. 1987, 6: 1677-1683. Rudensky AY, Maric M, Eastman S, Shoemaker L, DeRoos PC, Blum JS: Intracellular assembly and transport of endogenous peptide-MHC class II complexes. Immunity. 1994, 1: 585-594. 10.1016/1074-7613(94)90048-5. Vogt AB, Stern LJ, Amshoff C, Dobberstein B, Hammerling BJ, Kropshofer H: Interference of distinct invariant chain regions with superantigen contact area and antigenic peptide binding groove of HLA-DR. J Immunol. 1995, 155: 4757-4765. Ashman JB, Miller JJ: A role for the transmembrane domain in the trimerization of the MHC class II-associated invariant chain. Immunol. 1999, 163: 2704-2712. Frauwirth K, Shastri N: Mutation of the invariant chain transmembrane region inhibits II degradation, prolongs association with MHC class II, and selectively disrupts antigen presentation. Cell Immunol. 2001, 209: 97-108. 10.1006/cimm.2001.1796. Dixon AM, Stanley BJ, Matthews EE, Dawson JP, Engelman DM: Invariant chain transmembrane domain trimerization: a step in MHC class II assembly. Biochemistry. 2006, 45: 5228-5234. 10.1021/bi052112e. Jasanoff A, Wagner G, Wiley DC: Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J. 1998, 17: 6812-6818. 10.1093/emboj/17.23.6812. Kallinteris NL, Wu S, Lu X, Humphreys RE, von Hofe E, Xu M: Enhanced CD4+ T-cell response in DR4-transgenic mice to a hybrid peptide linking the Ii-Key segment of the invariant chain to the melanoma gp100(48–58) MHC class II epitope. J Immunother. 2005, 28: 352-358. 10.1097/01.cji.0000170362.45456.00. Zinckgraf JW, Sposato M, Zielinski V, Powell D, Treanor JJ, von Hofe E: Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination. Vaccine. 2009, 27: 5393-5401. 10.1016/j.vaccine.2009.06.081. Xu M, Lu X, Sposato M, Zinckgraf JW, Wu S, von Hofe E: Ii-Key/HPV16 E7 hybrid peptide immunotherapy for HPV16+ cancers. Vaccine. 2009, 27: 4641-4647. 10.1016/j.vaccine.2009.05.054. Nagata T, Aoshi T, Suzuki M, Uchijima M, Kim YH, Yang Z, Koide Y: Induction of protective immunity to Listeria monocytogenes by immunization with plasmid DNA expressing a helper T-cell epitope that replaces the class II-associated invariant chain peptide of the invariant chain. Infect Immun. 2002, 70: 2676-2680. 10.1128/IAI.70.5.2676-2680.2002. Gao M, Wang HP, Wang YN, Zhou Y, Wang QL: HCV-NS3 Th1 minigene vaccine based on invariant chain CLIP genetic substitution enhances CD4(+) Th1 cell responses in vivo. Vaccine. 2006, 24: 5491-7. 10.1016/j.vaccine.2006.04.004. Adams S, Humphreys RE: Invariant chain peptides enhancing or inhibiting the presentation of antigenic peptides by major histocompatibility complex class II molecules. Eur J Immun. 1995, 25: 1693-1702. 10.1002/eji.1830250632. Xu M, Lis J, Gulfo JV: MHC class II allosteric site drugs: New immunotherapeutics for malignant, infectious and autoimmune disease. Scan J Immunol. 2001, 54: 39-44. 10.1046/j.1365-3083.2001.00964.x. Sotiriadou NN, Kallinteris NL, Gritzapis AD, Voutsas IF, Papamichail M, von Hofe E, Humphreys RE, Pavlis T, Perez SA, Baxevanis CN: Ii-Key/HER-2/neu(776–790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu + tumors. Cancer Immunol Immunother. 2007, 56: 601-613. 10.1007/s00262-006-0213-z. Humphreys RE, Adams S, Koldzic G: Increasing the potentcy of MHC class II-presented epitopes by linking to Ii-Key peptide. Vaccine. 2000, 18: 2693-2697. 10.1016/S0264-410X(00)00067-0. Gillogly ME, Kallinteris NL, Xu M, Gulfo JV, Humphreys RE, Murray JL: Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer. Cancer Immunol Immunother. 2004, 53: 490-496. 10.1007/s00262-003-0463-y. Rhyner C, Kündig T, Akdis CA, Crameri R: Targeting the MHC II presentation pathway in allergy vaccine development. Biochem Soc Trans. 2007, 35: 833-834. 10.1042/BST0350833. Gjertsson I, Laurie KL, Devitt J, Howe SJ, Thrasher AJ, Holmdahl R, Gustafsson K: Tolerance induction using lentiviral gene delivery delays onset and severity of collagen II arthritis. Mol Ther. 2009, 17: 632-640. 10.1038/mt.2009.299. Dong L, Yu W, Xu F, Liu G: Cloning and identifying of mouse invariant chain gene and its identification in prokaryotic cells. J Anhui Agri Sci. 2007, 35: 7856-7857. Chines Xu F, Wu S, Yu W: Establishment of P815 cell line stably expressing Newcastle disease virus-F gene (NDV-F). J Agri Biotech. 2009, 17: 567-570. Chines Sadegh-Nasseri S, Germain RN: A role for peptide in determining MHC class II structure. Nature. 1991, 353: 167-170. 10.1038/353167a0. Sadegh-Nasseri S, Stern LJ, Wiley DC, Germain RN: MHC class II function preserved by lowaffinity peptide interactions preceding stable binding. Nature. 1994, 370: 647-650. 10.1038/370647a0. Sato AK, Zarutskie JA, Rushe MM, Lomakin A, Natarajan SK, Adegh-Nasseri SS: Determinants of the peptide-induced conformational change in the human class II major histocompatibility complex protein HLA-DR1. J Biol Chem. 2000, 275: 2165-2173. 10.1074/jbc.275.3.2165. Carven GJ, Stern LJ: Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry. 2005, 44: 13625-13637. 10.1021/bi050972p. Dornmair K, Rothenhausler B, McConnell HM: Structural intermediates in the reactions of antigenic peptides with MHC molecules. Cold Spring Harb Symp Quant Biol. 1989, 54: 409-416. 10.1101/SQB.1989.054.01.050. Witt SN, McConnell HM: Formation and dissociation of short-lived class II MHC-peptide complexes. Biochemistry. 1994, 33: 1861-1868. 10.1021/bi00173a032. Schmitt L, Boniface JJ, Davis MM, McConnell HM: Conformational isomers of a class II MHCpeptide complex in solution. J Mol Biol. 1999, 286: 207-218. 10.1006/jmbi.1998.2463. Natarajan SK, Assadi M, Sadegh-Nasser S: Stable peptide binding to MHC class II molecule is rapid and is determined by a receptive conformation shaped by prior association with low affinity peptides. J Immunol. 1999, 162: 4030-4036. Rabinowitz JD, Vrljic M, Kasson PM, Liang MN, Busch R, Boniface JJ: Formation of a highly peptide-receptive state of class II MHC. Immunity. 1998, 9: 699-709. 10.1016/S1074-7613(00)80667-6. Germain RN, Hendrix LR: MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature. 1991, 353: 134-139. 10.1038/353134a0. Natarajan SK, Assadi M, Sadegh-Nasseri S: Stable peptide binding to MHC class II molecule is rapid and is determined by a receptive conformation shaped by prior association with low affinity peptides. J Immunol. 1999, 162: 4030-4036. Huby RD, Dearman RJ, Kimber I: Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem. 1999, 274: 22591-22596. 10.1074/jbc.274.32.22591. Karacsonyi C, Knorr R, Fulbier A, Lindner R: Association of major histocompatibility complex II with cholesterol- and sphingolipid-rich membranes precedes peptide loading. J Biol Chem. 2004, 279: 34818-34826. 10.1074/jbc.M404608200. Anderson HA, Hiltbold EM, Roche PA: Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol. 2000, 1: 156-162. 10.1038/77842. Hiltbold EM, Poloso NJ, Roche PA: MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol. 2003, 170: 1329-1338. Pond L, Watts C: Functional early endosomes are required for maturation of major histocompatibility complex class II molecules in human B lymphoblastoid cells. J Biol Chem. 1999, 274: 18049-18054. 10.1074/jbc.274.25.18049. Brachet V, Pehau-Arnaudet G, Desaymard C, Raposo G, Amigorena S: Early endosomes are required for major histocompatiblity complex class II transport to peptide-loading compartments. Mol Biol Cell. 1999, 10: 2891-2904.