Boolean factors as a means of clustering of interestingness measures of association rules

Radim Bĕlohlávek1, Dhouha Grissa2, Sylvie Guillaume3, Engelbert Mephu Nguifo2, Jan Outrata1
1Data Analysis and Modeling Lab, Dept. Computer Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
2LIMOS, Clermont Université, Université Blaise Pascal, BP 10448, 63000, Clermont-Ferrand, France
3LIMOS, Clermont Université, Université d’Auvergne, BP 10448, 63000, Clermont-Ferrand, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB Conf., pp. 478–499 (1994)

Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)

Blanchard, J., Guillet, F., Briand, H., Gras, R.: Assessing rule with a probabilistic measure of deviation from equilbrium. In: Proc. of 11th International Symposium on Applied Stochastic Models and Data Analysis ASMDA, pp. 191–200. Brest, France (2005)

Blanchard, J., Guillet, F., Briand, H., Gras, R.: IPEE: Indice Probabiliste d’Écart à l’Équilibre pour l’évaluation de la qualité des règles. In: Dans l’Atelier Qualité des Données et des Connaissances, pp. 26–34 (2005)

Bouker, S., Saidi, R., Ben, Yahia S., Mephu, Nguifo E.: Ranking and selecting association rules based on dominance relationship. In: IEEE ICTAI, pp. 658–665 (2012)

Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: Proc. of the ACM SIGMOD Conference, pp. 265–276. Tucson, Arizona (1997)

Carpineto, C., Romano, G.: Concept data analysis. Theory and Applications. J. Wiley (2004)

Delgado, M., Ruiz, D.-L., Sanchez, D.: Studying interest measures for association rules through a logical model. Int. J. Uncertain. Fuzz. Knowl Based Syst. 18(1), 87–106 (2010).

Feno, D.R.: Mesures de qualité des règles d’association: normalisation et caractérisation des bases. Ph.D. thesis, Université de La Réunion (2007)

Ganter, B., Wille, R.: Formal concept analysis. Mathematical Foundations. Springer, Berlin (1999)

Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–31 (2006)

Geng, L., Hamilton, H.J.: Choosing the right lens: finding what is interesting in data mining. Qual. Meas. Data Min. 43, 3–24 (2007)

Guillaume, S., Grissa, D., Mephu Nguifo, E.: Categorization of interestingness measures for knowledge extraction. ArXiv e-prints 1206.6741 . cs.IT (2012)

Grissa, D., Guillaume, S., Mephu Nguifo, E.: Combining clustering techniques and formal concept analysis to characterize interestingness measures. ArXiv e-prints 1008.3629 . cs.IT. (2010)

Gras, R., Kuntz, P., Couturier, R., Guillet, F.: Une version entropique de l’intensité d’implication pour les corpus volumineux. In: EGC, pp. 69–80 (2001)

Hájek, P., Havránek, T.: Mechanizing Hypotheses Formation. Springer (1978)

Hájek, P., Holeňa, Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48 (2010)

Heravi, M.J., Zaïane, O.R.: A study on interestingness measures for associative classifiers. In: ACM SAC, pp. 1039–1046 (2010)

Hilderman, R.J., Hamilton, H.J.: Knowledge discovery and measures of interest. In: The International Series in Engineering and Computer Science, vol. 638, p. 2, 81. Kluwer (2001)

Huynh, X.-H., Guillet, F., Briand, H.: Clustering interestingness measures with positive correlation. ICEIS 2, 248–253 (2005)

Lallich, S., Teytaud, O.: Évaluation et validation de mesures d’intérêt des règles d’association. In: RNTI-E-1, numéro spécial, pp. 193–217 (2004)

Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: measure and statistical validation. Qual. Meas. Data Min. 43, 251–275 (2007)

Lenca, P., Meyer, P., Vaillant, B., Picouet P.: Aide multicritére à la décision pour évaluer les indices de qualité des connaissances—modélisation des préférences de l’utilisatieur. EGC 1, 271–282 (2003)

Lenca, P., Meyer, P., Picouet, P., Vaillant, B., Lallich, S.: Critères d’évaluation des mesures de qualité en ecd. RNTI (Entreposage et Fouille de données) 1(1), 123–134 (2003)

Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: A multicriteria decision aid for interestingness measure selection. Technical Report LUSSI-TR-2004-01-EN, (chap. 1). Dpt. LUSSI, ENST Bretagne (2004)

Lenca, P., Vaillant, B., Meyer, P., Lallich, S.: Association rule interestingness measures: experimental and theoretical studies. Qual. Meas. Data Min. 43, 51–76 (2007)

Maddouri, M., Gammoudi, J.: On semantic properties of interestingness measures for extracting rules from data. Lect. Notes Comput. Sci. 4431, 148–158 (2007)

Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI Press (1991)

Sese, J., Morishita, S.: Answering the most correlated n association rules efficiently. In: Proceedings of the 6th European Conf on Principles of Data Mining and Knowledge Discovery, pp. 410–422. Springer-Verlag (2002)

Surana, A., Kiran R.U., Reddy P.K.: Selecting a right interestingness measure for rare association rules. In: Proceedings of the 16th International Conference on Management of Data (COMAD 2010), pp. 115–124. Nagpur, India (2010)

Suzuki, E.: Pitfalls for categorizations of objective interestingness measures for rule discovery. In: Statistical Implicative Analysis, pp. 383–395. Springer-Verlag (2008)

Tan, P.-N., Kumar, V., Srivastava J.: Selecting the right objective measure for association analysis. Inf. Syst. 29(4), 293–313 (2004)

Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)

Vaillant, B.: Mesurer la qualité des règles d’association: études formelles et expérimentales. Ph.D. thesis, ENST Bretagne (2006)

Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. In: DS’04, The 7th International Conference on Discovery Science LNAI, vol. 3245, pp. 290–297 (2004)

Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht, Boston (1982)