Boolean factors as a means of clustering of interestingness measures of association rules
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB Conf., pp. 478–499 (1994)
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)
Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)
Blanchard, J., Guillet, F., Briand, H., Gras, R.: Assessing rule with a probabilistic measure of deviation from equilbrium. In: Proc. of 11th International Symposium on Applied Stochastic Models and Data Analysis ASMDA, pp. 191–200. Brest, France (2005)
Blanchard, J., Guillet, F., Briand, H., Gras, R.: IPEE: Indice Probabiliste d’Écart à l’Équilibre pour l’évaluation de la qualité des règles. In: Dans l’Atelier Qualité des Données et des Connaissances, pp. 26–34 (2005)
Bouker, S., Saidi, R., Ben, Yahia S., Mephu, Nguifo E.: Ranking and selecting association rules based on dominance relationship. In: IEEE ICTAI, pp. 658–665 (2012)
Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: Proc. of the ACM SIGMOD Conference, pp. 265–276. Tucson, Arizona (1997)
Delgado, M., Ruiz, D.-L., Sanchez, D.: Studying interest measures for association rules through a logical model. Int. J. Uncertain. Fuzz. Knowl Based Syst. 18(1), 87–106 (2010).
Feno, D.R.: Mesures de qualité des règles d’association: normalisation et caractérisation des bases. Ph.D. thesis, Université de La Réunion (2007)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–31 (2006)
Geng, L., Hamilton, H.J.: Choosing the right lens: finding what is interesting in data mining. Qual. Meas. Data Min. 43, 3–24 (2007)
Guillaume, S., Grissa, D., Mephu Nguifo, E.: Categorization of interestingness measures for knowledge extraction. ArXiv e-prints 1206.6741 . cs.IT (2012)
Grissa, D., Guillaume, S., Mephu Nguifo, E.: Combining clustering techniques and formal concept analysis to characterize interestingness measures. ArXiv e-prints 1008.3629 . cs.IT. (2010)
Gras, R., Kuntz, P., Couturier, R., Guillet, F.: Une version entropique de l’intensité d’implication pour les corpus volumineux. In: EGC, pp. 69–80 (2001)
Hájek, P., Holeňa, Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48 (2010)
Heravi, M.J., Zaïane, O.R.: A study on interestingness measures for associative classifiers. In: ACM SAC, pp. 1039–1046 (2010)
Hilderman, R.J., Hamilton, H.J.: Knowledge discovery and measures of interest. In: The International Series in Engineering and Computer Science, vol. 638, p. 2, 81. Kluwer (2001)
Huynh, X.-H., Guillet, F., Briand, H.: Clustering interestingness measures with positive correlation. ICEIS 2, 248–253 (2005)
Lallich, S., Teytaud, O.: Évaluation et validation de mesures d’intérêt des règles d’association. In: RNTI-E-1, numéro spécial, pp. 193–217 (2004)
Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: measure and statistical validation. Qual. Meas. Data Min. 43, 251–275 (2007)
Lenca, P., Meyer, P., Vaillant, B., Picouet P.: Aide multicritére à la décision pour évaluer les indices de qualité des connaissances—modélisation des préférences de l’utilisatieur. EGC 1, 271–282 (2003)
Lenca, P., Meyer, P., Picouet, P., Vaillant, B., Lallich, S.: Critères d’évaluation des mesures de qualité en ecd. RNTI (Entreposage et Fouille de données) 1(1), 123–134 (2003)
Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: A multicriteria decision aid for interestingness measure selection. Technical Report LUSSI-TR-2004-01-EN, (chap. 1). Dpt. LUSSI, ENST Bretagne (2004)
Lenca, P., Vaillant, B., Meyer, P., Lallich, S.: Association rule interestingness measures: experimental and theoretical studies. Qual. Meas. Data Min. 43, 51–76 (2007)
Maddouri, M., Gammoudi, J.: On semantic properties of interestingness measures for extracting rules from data. Lect. Notes Comput. Sci. 4431, 148–158 (2007)
Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI Press (1991)
Sese, J., Morishita, S.: Answering the most correlated n association rules efficiently. In: Proceedings of the 6th European Conf on Principles of Data Mining and Knowledge Discovery, pp. 410–422. Springer-Verlag (2002)
Surana, A., Kiran R.U., Reddy P.K.: Selecting a right interestingness measure for rare association rules. In: Proceedings of the 16th International Conference on Management of Data (COMAD 2010), pp. 115–124. Nagpur, India (2010)
Suzuki, E.: Pitfalls for categorizations of objective interestingness measures for rule discovery. In: Statistical Implicative Analysis, pp. 383–395. Springer-Verlag (2008)
Tan, P.-N., Kumar, V., Srivastava J.: Selecting the right objective measure for association analysis. Inf. Syst. 29(4), 293–313 (2004)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)
Vaillant, B.: Mesurer la qualité des règles d’association: études formelles et expérimentales. Ph.D. thesis, ENST Bretagne (2006)
Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. In: DS’04, The 7th International Conference on Discovery Science LNAI, vol. 3245, pp. 290–297 (2004)