Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis

Bioactive Materials - Tập 14 - Trang 250-261 - 2022
Liming Zheng1,2, Zaikai Zhuang1,2, Yixuan Li1,2, Tianshu Shi1,2, Kai Fu1,2, Wenjin Yan1,2, Lei Zhang1,2, Peng Wang1,2,3, Lan Li1,2,3, Qing Jiang1,2,3
1State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
2Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
3Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, 210008, PR China

Tài liệu tham khảo

Zeng, 2019, The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey, J. Bone Miner. Res., 34, 1789, 10.1002/jbmr.3757 Black, 2016, Postmenopausal osteoporosis, N. Engl. J. Med., 374, 254, 10.1056/NEJMcp1513724 Wright, 2014, The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine, J. Bone Miner. Res., 29, 2520, 10.1002/jbmr.2269 Eastell, 2017, Use of bone turnover markers in postmenopausal osteoporosis, Lancet Diabetes Endocrinol, 5, 908, 10.1016/S2213-8587(17)30184-5 Naylor, 2012, Bone turnover markers: use in osteoporosis, Nat. Rev. Rheumatol., 8, 379, 10.1038/nrrheum.2012.86 Li, 2021, Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS, Bioact. Mater., 6, 3839, 10.1016/j.bioactmat.2021.03.039 Pinna, 2021, Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment, Acta Biomater., 122, 365, 10.1016/j.actbio.2020.12.029 Sun, 2020, The Nrf 2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling, Redox Biol, 28, 101309, 10.1016/j.redox.2019.101309 Jiang, 2020, Resveratrol promotes osteogenesis via activating SIRT1/FoxO 1 pathway in osteoporosis mice, Life Sci., 246, 117422, 10.1016/j.lfs.2020.117422 Lin, 2021, Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration, Bioact. Mater., 6, 2315, 10.1016/j.bioactmat.2021.01.018 Chen, 2015, The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate, Biomaterials, 61, 126, 10.1016/j.biomaterials.2015.04.044 Lee, 2019, Current advances in immunomodulatory biomaterials for bone regeneration, Adv. Healthc. Mater., 8, 1801106, 10.1002/adhm.201801106 Favus, 2010, Bisphosphonates for osteoporosis, N. Engl. J. Med., 363, 2027, 10.1056/NEJMct1004903 Cheng, 2020, New frontiers in osteoporosis therapy, Annu. Rev. Med., 71, 10.1146/annurev-med-052218-020620 Compston, 2019, Osteoporosis, Lancet., 393, 364, 10.1016/S0140-6736(18)32112-3 Drake, 2008, Bisphosphonates: mechanism of action and role in clinical practice, Mayo Clin. Proc., 83, 1032, 10.4065/83.9.1032 Liu, 2020, Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex, Acta Biomater., 103, 281, 10.1016/j.actbio.2019.12.022 Li, 2021, Dual regulation of osteoclastogenesis and osteogenesis for osteoporosis therapy by iron oxide hydroxyapatite core/shell nanocomposites, Regen. Biomater., 8, 10.1093/rb/rbab027 Li, 2018, Adaptive materials based on iron oxide nanoparticles for bone regeneration, ChemPhysChem, 19, 1965, 10.1002/cphc.201701294 Yu, 2020, Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species, Int. J. Biol. Macromol., 165, 1634, 10.1016/j.ijbiomac.2020.10.016 Xu, 2018, Targeting skeletal endothelium to ameliorate bone loss, Nat. Med., 24, 823, 10.1038/s41591-018-0020-z Gao, 2021, Targeting nanoparticles for diagnosis and therapy of bone tumors: opportunities and challenges, Biomaterials, 265, 10.1016/j.biomaterials.2020.120404 Hoque, 2021, Bone targeting nanocarrier-assisted delivery of adenosine to combat osteoporotic bone loss, Biomaterials, 273, 10.1016/j.biomaterials.2021.120819 Sun, 2021, Bisphosphonates for delivering drugs to bone, Br. J. Pharmacol., 178, 10.1111/bph.15251 Lee, 2016, Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment, Int. J. Nanomed., 11, 4583, 10.2147/IJN.S112415 Khan, 1997, Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis, J. Bone Miner. Res., 12, 1700, 10.1359/jbmr.1997.12.10.1700 Ossipov, 2015, Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering, Expet Opin. Drug Deliv., 12, 1443, 10.1517/17425247.2015.1021679 Dempster, 2013, Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee, J. Bone Miner. Res., 28, 2, 10.1002/jbmr.1805 Cho, 2013, Fluorochrome-functionalized nanoparticles for imaging DNA in biological systems, ACS Nano, 7, 2032, 10.1021/nn305962n Willems, 2021, Bone union assessment with computed tomography (CT) and statistical associations with mechanical or histological testing: a systematic review of animal studies, Calcif. Tissue Int. Winterbourn, 2016, Reactive oxygen species and neutrophil function, Annu. Rev. Biochem., 85, 765, 10.1146/annurev-biochem-060815-014442 Pavia, 1979, vol. 2009 Yu, 2016, Osteoporosis: the result of an ‘aged’ bone microenvironment, Trends Mol. Med., 22, 641, 10.1016/j.molmed.2016.06.002 Merinopoulos, 2021, Diagnostic applications of ultrasmall superparamagnetic particles of iron oxide for imaging myocardial and vascular inflammation, JACC Cardiovasc. Imaging, 14, 1249, 10.1016/j.jcmg.2020.06.038 Dadfar, 2019, Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications, Adv. Drug Deliv. Rev., 138, 302, 10.1016/j.addr.2019.01.005 Panahifar, 2013, Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity, ACS Appl. Mater. Interfaces, 5, 5219, 10.1021/am4010495 Muñoz, 2020, Differential contribution of Nox1, Nox 2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity, Redox Biol, 28, 101330, 10.1016/j.redox.2019.101330 Wingler, 2011, NOX1, 2, 4, 5: counting out oxidative stress, Br. J. Pharmacol., 164, 866, 10.1111/j.1476-5381.2011.01249.x Rushworth, 2014, Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits, Pharmacol. Ther., 141, 150, 10.1016/j.pharmthera.2013.09.006 Huang, 2018, A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice, Biomaterials, 182, 58, 10.1016/j.biomaterials.2018.07.046 Wang, 2013, miR-214 targets ATF4 to inhibit bone formation, Nat. Med., 19, 93, 10.1038/nm.3026 Li, 2016, Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation, Nat. Commun., 7, 10872, 10.1038/ncomms10872 Pang, 2021, Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis, Bioact. Mater., 6, 712, 10.1016/j.bioactmat.2020.09.006 Cattalini, 2012, Bisphosphonate-based strategies for bone tissue engineering and orthopedic implants, Tissue Eng. B Rev., 18, 323, 10.1089/ten.teb.2011.0737 Perazella, 2008, Bisphosphonate nephrotoxicity, Kidney Int., 74, 1385, 10.1038/ki.2008.356 Shudo, 2018, Long-term oral bisphosphonates delay healing after tooth extraction: a single institutional prospective study, Osteoporos. Int., 29, 2315, 10.1007/s00198-018-4621-7 Estell, 2021, Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis, Nat. Rev. Endocrinol., 17, 31, 10.1038/s41574-020-00426-5 Zheng, 2020, Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model, Biomaterials, 238, 10.1016/j.biomaterials.2020.119828 Yao, 2021, Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice, Bioact. Mater., 6, 1341, 10.1016/j.bioactmat.2020.10.016 Zhang, 2017, Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration, Acta Biomater., 64, 389, 10.1016/j.actbio.2017.09.039 Kendler, 2018, Effects of teriparatide and risedronate on new fractures in postmenopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial, Lancet, 391, 230, 10.1016/S0140-6736(17)32137-2 Pouillès, 2021, TBS in early postmenopausal women with severe vertebral osteoporosis, Bone, 142, 115698, 10.1016/j.bone.2020.115698 Miller, 2016, Management of severe osteoporosis, Expet Opin. Pharmacother., 17, 473, 10.1517/14656566.2016.1124856 Dadfar, 2020, Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance, J. Nanobiotechnol., 18, 22, 10.1186/s12951-020-0580-1 Wei, 2017, Exceedingly small iron oxide nanoparticles as positive MRI contrast agents, Proc. Natl. Acad. Sci. Unit. States Am., 114, 2325, 10.1073/pnas.1620145114 Ling, 2015, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Acc. Chem. Res., 48, 1276, 10.1021/acs.accounts.5b00038 Jia, 2018, NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo, Biomaterials, 178, 302, 10.1016/j.biomaterials.2018.06.029 Lou, 2021, Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett.