Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis
Tài liệu tham khảo
Zeng, 2019, The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey, J. Bone Miner. Res., 34, 1789, 10.1002/jbmr.3757
Black, 2016, Postmenopausal osteoporosis, N. Engl. J. Med., 374, 254, 10.1056/NEJMcp1513724
Wright, 2014, The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine, J. Bone Miner. Res., 29, 2520, 10.1002/jbmr.2269
Eastell, 2017, Use of bone turnover markers in postmenopausal osteoporosis, Lancet Diabetes Endocrinol, 5, 908, 10.1016/S2213-8587(17)30184-5
Naylor, 2012, Bone turnover markers: use in osteoporosis, Nat. Rev. Rheumatol., 8, 379, 10.1038/nrrheum.2012.86
Li, 2021, Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS, Bioact. Mater., 6, 3839, 10.1016/j.bioactmat.2021.03.039
Pinna, 2021, Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment, Acta Biomater., 122, 365, 10.1016/j.actbio.2020.12.029
Sun, 2020, The Nrf 2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling, Redox Biol, 28, 101309, 10.1016/j.redox.2019.101309
Jiang, 2020, Resveratrol promotes osteogenesis via activating SIRT1/FoxO 1 pathway in osteoporosis mice, Life Sci., 246, 117422, 10.1016/j.lfs.2020.117422
Lin, 2021, Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration, Bioact. Mater., 6, 2315, 10.1016/j.bioactmat.2021.01.018
Chen, 2015, The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate, Biomaterials, 61, 126, 10.1016/j.biomaterials.2015.04.044
Lee, 2019, Current advances in immunomodulatory biomaterials for bone regeneration, Adv. Healthc. Mater., 8, 1801106, 10.1002/adhm.201801106
Favus, 2010, Bisphosphonates for osteoporosis, N. Engl. J. Med., 363, 2027, 10.1056/NEJMct1004903
Cheng, 2020, New frontiers in osteoporosis therapy, Annu. Rev. Med., 71, 10.1146/annurev-med-052218-020620
Compston, 2019, Osteoporosis, Lancet., 393, 364, 10.1016/S0140-6736(18)32112-3
Drake, 2008, Bisphosphonates: mechanism of action and role in clinical practice, Mayo Clin. Proc., 83, 1032, 10.4065/83.9.1032
Liu, 2020, Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex, Acta Biomater., 103, 281, 10.1016/j.actbio.2019.12.022
Li, 2021, Dual regulation of osteoclastogenesis and osteogenesis for osteoporosis therapy by iron oxide hydroxyapatite core/shell nanocomposites, Regen. Biomater., 8, 10.1093/rb/rbab027
Li, 2018, Adaptive materials based on iron oxide nanoparticles for bone regeneration, ChemPhysChem, 19, 1965, 10.1002/cphc.201701294
Yu, 2020, Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species, Int. J. Biol. Macromol., 165, 1634, 10.1016/j.ijbiomac.2020.10.016
Xu, 2018, Targeting skeletal endothelium to ameliorate bone loss, Nat. Med., 24, 823, 10.1038/s41591-018-0020-z
Gao, 2021, Targeting nanoparticles for diagnosis and therapy of bone tumors: opportunities and challenges, Biomaterials, 265, 10.1016/j.biomaterials.2020.120404
Hoque, 2021, Bone targeting nanocarrier-assisted delivery of adenosine to combat osteoporotic bone loss, Biomaterials, 273, 10.1016/j.biomaterials.2021.120819
Sun, 2021, Bisphosphonates for delivering drugs to bone, Br. J. Pharmacol., 178, 10.1111/bph.15251
Lee, 2016, Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment, Int. J. Nanomed., 11, 4583, 10.2147/IJN.S112415
Khan, 1997, Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis, J. Bone Miner. Res., 12, 1700, 10.1359/jbmr.1997.12.10.1700
Ossipov, 2015, Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering, Expet Opin. Drug Deliv., 12, 1443, 10.1517/17425247.2015.1021679
Dempster, 2013, Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee, J. Bone Miner. Res., 28, 2, 10.1002/jbmr.1805
Cho, 2013, Fluorochrome-functionalized nanoparticles for imaging DNA in biological systems, ACS Nano, 7, 2032, 10.1021/nn305962n
Willems, 2021, Bone union assessment with computed tomography (CT) and statistical associations with mechanical or histological testing: a systematic review of animal studies, Calcif. Tissue Int.
Winterbourn, 2016, Reactive oxygen species and neutrophil function, Annu. Rev. Biochem., 85, 765, 10.1146/annurev-biochem-060815-014442
Pavia, 1979, vol. 2009
Yu, 2016, Osteoporosis: the result of an ‘aged’ bone microenvironment, Trends Mol. Med., 22, 641, 10.1016/j.molmed.2016.06.002
Merinopoulos, 2021, Diagnostic applications of ultrasmall superparamagnetic particles of iron oxide for imaging myocardial and vascular inflammation, JACC Cardiovasc. Imaging, 14, 1249, 10.1016/j.jcmg.2020.06.038
Dadfar, 2019, Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications, Adv. Drug Deliv. Rev., 138, 302, 10.1016/j.addr.2019.01.005
Panahifar, 2013, Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity, ACS Appl. Mater. Interfaces, 5, 5219, 10.1021/am4010495
Muñoz, 2020, Differential contribution of Nox1, Nox 2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity, Redox Biol, 28, 101330, 10.1016/j.redox.2019.101330
Wingler, 2011, NOX1, 2, 4, 5: counting out oxidative stress, Br. J. Pharmacol., 164, 866, 10.1111/j.1476-5381.2011.01249.x
Rushworth, 2014, Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits, Pharmacol. Ther., 141, 150, 10.1016/j.pharmthera.2013.09.006
Huang, 2018, A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice, Biomaterials, 182, 58, 10.1016/j.biomaterials.2018.07.046
Wang, 2013, miR-214 targets ATF4 to inhibit bone formation, Nat. Med., 19, 93, 10.1038/nm.3026
Li, 2016, Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation, Nat. Commun., 7, 10872, 10.1038/ncomms10872
Pang, 2021, Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis, Bioact. Mater., 6, 712, 10.1016/j.bioactmat.2020.09.006
Cattalini, 2012, Bisphosphonate-based strategies for bone tissue engineering and orthopedic implants, Tissue Eng. B Rev., 18, 323, 10.1089/ten.teb.2011.0737
Perazella, 2008, Bisphosphonate nephrotoxicity, Kidney Int., 74, 1385, 10.1038/ki.2008.356
Shudo, 2018, Long-term oral bisphosphonates delay healing after tooth extraction: a single institutional prospective study, Osteoporos. Int., 29, 2315, 10.1007/s00198-018-4621-7
Estell, 2021, Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis, Nat. Rev. Endocrinol., 17, 31, 10.1038/s41574-020-00426-5
Zheng, 2020, Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model, Biomaterials, 238, 10.1016/j.biomaterials.2020.119828
Yao, 2021, Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice, Bioact. Mater., 6, 1341, 10.1016/j.bioactmat.2020.10.016
Zhang, 2017, Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration, Acta Biomater., 64, 389, 10.1016/j.actbio.2017.09.039
Kendler, 2018, Effects of teriparatide and risedronate on new fractures in postmenopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial, Lancet, 391, 230, 10.1016/S0140-6736(17)32137-2
Pouillès, 2021, TBS in early postmenopausal women with severe vertebral osteoporosis, Bone, 142, 115698, 10.1016/j.bone.2020.115698
Miller, 2016, Management of severe osteoporosis, Expet Opin. Pharmacother., 17, 473, 10.1517/14656566.2016.1124856
Dadfar, 2020, Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance, J. Nanobiotechnol., 18, 22, 10.1186/s12951-020-0580-1
Wei, 2017, Exceedingly small iron oxide nanoparticles as positive MRI contrast agents, Proc. Natl. Acad. Sci. Unit. States Am., 114, 2325, 10.1073/pnas.1620145114
Ling, 2015, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Acc. Chem. Res., 48, 1276, 10.1021/acs.accounts.5b00038
Jia, 2018, NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo, Biomaterials, 178, 302, 10.1016/j.biomaterials.2018.06.029
Lou, 2021, Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett.