Bone structure and formation: A new perspective

Materials Science and Engineering: R: Reports - Tập 58 - Trang 77-116 - 2007
Matthew J. Olszta1, Xingguo Cheng1,2, Sang Soo Jee1, Rajendra Kumar1,3, Yi-Yeoun Kim1,4, Michael J. Kaufman5, Elliot P. Douglas1, Laurie B. Gower1
1Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
2Center for Biomaterials, Department of Oral Rehabilitation, Biomaterials and Skeletal Development, University of Connecticut Health Center, Farmington, CT 06030, USA
3Department of Environmental Engineering (BioEngineering Initiative), Montana Tech of the University of Montana, Butte, MT 59701, USA
4Discovery Research, Specialty Minerals, Inc., Bethlehem, PA 18017, USA
5Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA

Tài liệu tham khảo

Currey, 1990, Biomechanics of mineralized skeletons, I, 11 Currey, 1995, Microstructure–property relations in vertebrate bony hard tissues: microdamage and toughness, 117 Currey, 2003, Role of collagen and other organics in the mechanical properties of bone, Osteoporosis Int., 14, S29, 10.1007/s00198-003-1470-8 Wang, 2004, The toughness of cortical bone and its relationship with age, Ann. Biomed. Eng., 32, 123, 10.1023/B:ABME.0000007797.92559.5e Weiner, 1998, The material bone: structure mechanical function relations, Ann. Rev. Mater. Sci., 28, 271, 10.1146/annurev.matsci.28.1.271 Cowin, 1993, Bone stress-adaptation models, J. Biomech. Eng.: Trans. ASME, 115, 528, 10.1115/1.2895535 Bonfield, 1987, Advances in the fracture mechanics of cortical bone, J. Biomech., 20, 1971, 10.1016/0021-9290(87)90025-X Rho, 1998, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., 20, 92, 10.1016/S1350-4533(98)00007-1 Burstein, 1975, Contribution of collagen and mineral to elastic–plastic properties of bone, J. Bone Joint Surg. Am., 57, 956, 10.2106/00004623-197557070-00013 Currey, 2005, Materials science—hierarchies in biomineral structures, Science, 309, 253, 10.1126/science.1113954 Currey, 2001, Mechanical properties of nacre and highly mineralized bone, Proc. R. Soc. Lond. B, 268, 107, 10.1098/rspb.2000.1337 Gupta, 2005, Nanoscale deformation mechanisms in bone, Nano Lett., 5, 2108, 10.1021/nl051584b Nalla, 2005, Mechanistic aspects of fracture and R-curve behavior in human cortical bone, Biomaterials, 26, 217, 10.1016/j.biomaterials.2004.02.017 Nyman, 2005, Effect of ultrastructural changes on the toughness of bone, Micron, 36, 566, 10.1016/j.micron.2005.07.004 Peterlik, 2006, From brittle to ductile fracture of bone, Nat. Mater., 5, 52, 10.1038/nmat1545 Thompson, 2001, Bone indentation recovery time correlates with bond reforming time, Nature, 414, 773, 10.1038/414773a Vashishth, 2004, Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements, J. Biomech., 37, 943, 10.1016/j.jbiomech.2003.11.003 Lowenstam, 1989 1992, 406 Cameron, 1963, The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis, Clin. Orthop., 26, 199 Sela, 1992, The role of matrix vesicles in calcification, 73 Wuthier, 1982, A review of primary mechanism of endochondral calcification with special emphasis on the role of cells mitochondria and matrix vesicles, Clin. Orthop. Relat. Res., 171, 219 Boskey, 1977, In vitro nucleation of hydroxyapatite by a bone calcium phospholipid phosphate complex, Calcif. Tissue Int., 22, 197, 10.1007/BF02064064 Boyan, 1989, Role of lipids in calcification of cartilage, Anat. Rec., 224, 211, 10.1002/ar.1092240210 Boyan, 2001, Mechanisms involved in osteoblast response to implant surface morphology, Annu. Rev. Mater. Res., 31, 357, 10.1146/annurev.matsci.31.1.357 Shepard, 1992, Role of proteoglycans in calcification, 41 Bonucci, 1992, Role of collagen fibrils in calcification, 19 Sela, 1979, Primary bone-formation in normal and neoplastic condition associated with matrix vesicle and calcospherite formation, Calcif. Tissue Int., 27, A42 G.J. Tortora, Chapter 5: histology of bone tissue, in: Principles of Human Anatomy, Harper Collines College Publishers, NY, 1995, p. 796. Baer, 1995, Hierarchical structure of collagen composite systems: lessons from biology, 13 Termine, 1986, Bone proteins and mineralization, Rheumatology, 10, 184 Giachelli, 2000, Osteopont: a versatile regulator of inflammation and biomineralization, Matrix Biol., 19, 615, 10.1016/S0945-053X(00)00108-6 Gericke, 2005, Importance of phosphorylation for osteopontin regulation of biomineralization, Calcif. Tissue Int., 77, 45, 10.1007/s00223-004-1288-1 Fisher, 1985, Non-collagenous proteins influencing the local mechanism of calcification, Clin. Orthop., 200, 362, 10.1097/00003086-198511000-00038 Linde, 1984, Noncollagenous proteins and proteoglycans in dentinogenesis, 55 Veis, 1989, Biochemical studies of vertebrate tooth mineralization, 189 Bonucci, 1992 Nanci, 1999, Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density, J. Struct. Biol., 126, 256, 10.1006/jsbi.1999.4137 Dorozhkin, 2002, Biological and medical significance of calcium phosphates, Angew. Chem. Int. Ed., 41, 3130, 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1 Suvorova, 2004, HRTEM simulation in determination of thickness and grain misorientation for hydroxyapatite crystals, Crystallogr. Rep., 49, 343, 10.1134/1.1756632 Weiner, 1991, Organization of crystals in bone, 247 Eppell, 2001, Shape and size of isolated bone mineralites measured using atomic force microscopy, J. Orthop. Res., 19, 1027, 10.1016/S0736-0266(01)00034-1 Martin, 1998 Eastoe, 1954, The organic constituents of mammalian compact bone, Biochem. J., 57, 453, 10.1042/bj0570453 J. Yan, Elastic–plastic fracture mechanics of compact bone, in: Materials Science & Engineering, University of Florida, Gainesville, 2005, p. 100. Hassenkam, 2004, High-resolution AFM imaging of intact and fractured trabecular bone, Bone, 35, 4, 10.1016/j.bone.2004.02.024 Rosen, 2002, The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatites used as bone graft substitute materials, Biomaterials, 23, 921, 10.1016/S0142-9612(01)00204-6 Weiner, 1986, Disaggregation of bone into crystals, Calcif. Tissue Int., 39, 365, 10.1007/BF02555173 Hodge, 1963, Recent studies with the electron microscope on ordered aggreagates of the tropocollagen molecule, 289 Christoffersen, 1991, A contribution with review to the description of mineralization of bone and other calcified tissues in vivo, Anat. Rec., 230, 435, 10.1002/ar.1092300402 Fraser, 1983, Molecular conformation and packing in collagen fibrils, J. Mol. Biol., 167, 497, 10.1016/S0022-2836(83)80347-7 Katz, 1989, The structure of mineralized collagen fibrils, Connect. Tissue Res., 21, 49, 10.3109/03008208909050005 Traub, 1989, Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers, Proc. Natl. Acad. Sci., 86, 9822, 10.1073/pnas.86.24.9822 Voet, 1995 Venturoni, 2003, Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy, Biochem. Biophys. Res. Commun., 303, 508, 10.1016/S0006-291X(03)00390-5 Gutsmann, 2003, Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner, Biophys. J., 84, 2593, 10.1016/S0006-3495(03)75064-4 Landis, 1993, Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction, J. Struct. Biol., 110, 39, 10.1006/jsbi.1993.1003 Landis, 1996, Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging, J. Struct. Biol., 117, 24, 10.1006/jsbi.1996.0066 Giraud-Guille, 1996, Twisted liquid crystalline supramolecular arrangements in morphogenesis, Int. Rev. Cytol.: Surv. Cell Biol., 166, 59, 10.1016/S0074-7696(08)62506-1 Cowin, 2004, Do liquid crystal-like flow processes occur in the supramolecular assembly of biological tissues?, J. Non-Newtonian Fluid Mech., 199, 155, 10.1016/j.jnnfm.2004.01.012 Robinson, 1952, Collagen–crystal relationships in bone as seen in the electron microscope, Anat. Rec., 114, 383, 10.1002/ar.1091140302 Jackson, 1978, Morphology of bone-mineral crystals, Calcif. Tissue Res., 25, 217, 10.1007/BF02010772 Glimcher, 1998, The nature of the mineral phase in bone: biological and clinical implications, 23 LeGeros, 1991 McConnell, 1952, The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues, J. Dent. Res., 31, 53, 10.1177/00220345520310012301 Zhanga, 2003, Dissolution and mineralization behaviors of HA coatings, Biomaterials, 24, 4741, 10.1016/S0142-9612(03)00371-5 2003, 315 Bigi, 1988, Calcified turkey leg tendon as structural model for bone mineralization, Int. J. Biol. Macromol., 10, 282, 10.1016/0141-8130(88)90005-0 Glimcher, 1968, The organization and structure of bone, and the mechanism of calcification, vol. 2 Harper, 1966, Measurement of non-crystalline calcium phosphate in bone mineral, Proc. Soc. Exp. Biol. Med., 122, 137, 10.3181/00379727-122-31073 Posner, 1975, Local order in bone-mineral and related calcium phosphates, J. Bone Joint Surg.: Am. Vol. A, 57, 571 Termine, 1966, Infra-red determination of percentage of crystallinity in apatitic calcium phosphates, Nature, 211, 268, 10.1038/211268a0 Termine, 1966, Nature of mineral phase during endochondral bone formation, Fed. Proc., 25, 763 Termine, 1967, Amorphous-crystalline mineral changes during endochondral and periosteal bone formation, Proc. Soc. Exp. Biol. Med., 125, 4, 10.3181/00379727-125-31999 Glimcher, 1959, Molecular biology of mineralized tissues with particular reference to bone, Rev. Mod. Phys., 31, 359, 10.1103/RevModPhys.31.359 Nelson, 1982, Paracrystalline disorder of biological and synthetic carbonate-substituted apatites, J. Dent. Res., 61, 1274, 10.1177/00220345820610111301 Posner, 1987, Bone mineral and the mineralization process, 65 Wheeler, 1977, X-ray study of paracrystalline nature of bone apatite, Calcif. Tissue Res., 24, 243, 10.1007/BF02223323 E.D. Eanes, Physico-chemical principles of biomineralization, in: A. Pecile, B. De Bernard (Eds.), Bone Regulatory Factors Morphology, Biochemistry, Physiology and Pharmacology NATO ASI Series A, Life Sciences, vol. 184, Perseus Publishing, Cambridge, 1990, p. 302. Brown, 1976, Chemical properties of bone mineral, Annu. Rev. Mater. Sci., 6, 213, 10.1146/annurev.ms.06.080176.001241 Glimcher, 1981, Recent studies of bone-mineral—is the amorphous calcium-phosphate theory valid, J. Cryst. Growth, 53, 100, 10.1016/0022-0248(81)90058-0 Termine, 1966, Infrared analysis of rat bone—age dependency of amorphous and crystalline mineral fractions, Science, 153, 1523, 10.1126/science.153.3743.1523 Posner, 1975, Synthetic analogue of bone-mineral formation, J. Dent. Res., 54, B88, 10.1177/00220345750540023301 Posner, 1974, Amorphous calcium phosphate-hydroxyapatite—bone-mineral formation analog system, J. Bone Joint Surg.: Am. A, 56, 860 Glimcher, 1968 Glimcher, 1984, Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-ligand phosphate bonds, Phil. Trans. R. Soc. Lond. Ser. B, 304, 479, 10.1098/rstb.1984.0041 Eanes, 1992, Dynamics of calcium phosphate precipitation, Calcif. Biol. Syst., 1 A. Veis, B. Sabsay, C.B. Wu, Phosphoproteins as mediators of biomineralization, ACS Symp. Ser. 444 (1991) 1. Bianco, 1992, Structure and mineralization of bone, 243 Termine, 1981, Osteonectin, a bone-specific protein linking mineral to collagen, Cell, 26, 99, 10.1016/0092-8674(81)90037-4 Addadi, 1985, Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization, Proc. Natl. Acad. Sci. U.S.A., 82, 4110, 10.1073/pnas.82.12.4110 Weiner, 1991, Acidic macromolecules of mineralized tissues: the controllers of crystal formation, Trends Biochem. Sci., 16, 252, 10.1016/0968-0004(91)90098-G Gorski, 1992, Acidic phosphroteins from bone matrix: a structural rationalization of their role in biomineralization, Calcif. Tissue Int., 50, 391, 10.1007/BF00296767 Constantz, 1988, Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons, J. Exp. Zool., 248, 253, 10.1002/jez.1402480302 Marsh, 1994, Biomineralization, 141, 121 1990, 303 Saito, 1997, Mineral induction by immobilized phosphoproteins, Bone, 21, 305, 10.1016/S8756-3282(97)00149-X Hoang, 2003, Bone recognition mechanism of porcine osteocalcin from crystal structure, Nature, 425, 977, 10.1038/nature02079 Bradt, 1999, Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation, Chem. Mater., 11, 2694, 10.1021/cm991002p Rhee, 2001, Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics, Biomaterials, 22, 2843, 10.1016/S0142-9612(01)00028-X Kikuchi, 2001, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22, 1705, 10.1016/S0142-9612(00)00305-7 Goissis, 2003, Biomimetic mineralization of charged collagen matrices: in vitro and in vivo study, Artificial Organs, 27, 437, 10.1046/j.1525-1594.2003.07252.x Chen, 2005, In vitro mineralization of collagen in demineralized fish bone, Macromol. Chem. Phys., 206, 43, 10.1002/macp.200400066 L.A. Gower, The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals, in: Polymer Science & Engineering, University of Massachusetts at Amherst, 1997, p. 119. Gower, 1998, Calcium carbonate films and helices grown in solutions of poly(aspartate), J. Cryst. Growth, 191, 153, 10.1016/S0022-0248(98)00002-5 Gower, 2000, Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process, J. Cryst. Growth, 210, 719, 10.1016/S0022-0248(99)00749-6 L. Dai, Mechanistic study of the polymer-induced liquid-precursor (PILP) process: relevance to biomineralization, in: Materials Science & Engineering, University of Florida, Gainesville, FL, 2005, p. 318. Gower, 1998, Calcium carbonate films and helices grown in solutions of poly(aspartate), J. Cryst. Growth, 191, 153, 10.1016/S0022-0248(98)00002-5 Cheng, 2005, Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process, Biotechnol. Prog., 22, 141, 10.1021/bp050166+ X. Cheng, Relevance of the polymer-induced liquid-precursor (PILP) process to biomineralization and development of biomimetic materials, in: Materials Science and Engineering, University of Florida, Gainesville, FL, 2005, p. 260. Y.-Y. Kim, Patterning of bioinorganic thin films by combining soft lithography and a biomimetic crystallization process, in: Materials Science and Engineering, University of Florida, Gainesville, 2003, p. 154. Y.-Y. Kim, L. Gower, Biomimetic patterning of ceramic thin films, in: CIMTEC 2002, 10th International Ceramics Congress, Part B: Nonconventional Routes to Ceramics, Florence, Italy, July 14–18, 2002. Kim, 2003, Formation of complex non-equilibrium morphologies of calcite via biomimetic processing Olszta, 2004, Nano-fibrous calcite synthesized via a solution-precursor-solid (SPS) mechanism, Chem. Mater., 16, 2355, 10.1021/cm035161r M.J. Olszta, A new paradigm for biomineral formation via an amorphous liquid-phase precursor process, in: Materials Science and Engineering, University of Florida, Gainesville, FL, 2004, p. 146. Olszta, 2003, A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor, Connect. Tissue Res., 44, 326, 10.1080/03008200390181852 L. Addadi, J. Moradian-Oldak, S. Weiner, Macromolecule-crystal recognition in biomineralization, in: C.S. Sikes, A.P. Wheeler (Eds.), Surface Reactive Peptides and Polymers-Discovery and Commercialization, ACS Symposium Series, 444, Washington, DC, 1991, p. 13. Addadi, 1989, Stereochemical and structural relations between macromolecules and crystals in biomineralization, 133 Olszta, 2003, Intrafibrillar mineralization of collagen using a liquid-phase mineral precursor, vol. 774, 127 Olszta, 2003, Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process, Calcif. Tissue Int., 72, 583, 10.1007/s00223-002-1032-7 Andrews, 1971 McCusker, 1999, Rietveld refinement guidelines, J. Appl. Crystallogr., 32, 36, 10.1107/S0021889898009856 Kumar, 2004, Phase composition and heat of crystallisation of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders, Acta Mater., 52, 10.1016/j.actamat.2003.11.016 Knowles, 1995, Structural changes induced during thermal spraying of hydroxyapatite. A comparison of three different spraying methods, vol. 8, 311 Eanes, 1967, Mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite, J. Phys. Chem. Solids S, 373 Arnold, 2001, Quantitative analysis of the biomineralization of different hard tissues, J. Microsc., 202, 488, 10.1046/j.1365-2818.2001.00831.x Brown, 1987, Octacalcium phosphate as a precursor in biomineral formation, Adv. Dent. Res., 1, 306, 10.1177/08959374870010022201 Crane, 2006, Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization, Bone, 39, 434, 10.1016/j.bone.2006.02.059 Traub, 1989, 3-Dimensional ordered distribution of crystals in turkey tendon collagen-fibers, Proc. Natl. Acad. Sci. U.S.A., 86, 9822, 10.1073/pnas.86.24.9822 Weiner, 1999, Lamellar bone: structure–function relations, J. Struct. Biol., 126, 241, 10.1006/jsbi.1999.4107 Long, 1998, A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface, Proc. Natl. Acad. Sci., 95, 12083, 10.1073/pnas.95.21.12083 Long, 2001, Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR, Biochem.: Acc. Publ., 40, 15451, 10.1021/bi010864c Evans, 2003, ‘Apples’ and ‘oranges’: comparing the structural aspects of biomineral- and ice-interaction proteins, Curr. Opin. Coll. Interface Sci., 8, 48, 10.1016/S1359-0294(03)00009-8 Rhee, 1998, Hydroxyapatite coating on a collagen membrane by a biomimetic method, J. Am. Ceram. Soc., 81, 3029, 10.1111/j.1151-2916.1998.tb02734.x Lickorish, 2004, Collagen–hydroxyapatite composite prepared by biomimetic process, J. Biomed. Mater. Res. Part A, 68A, 19, 10.1002/jbm.a.20031 Bagambisa, 1993, A scanning electron microscope study of the ultrastructural organization of bone mineral, Cells Mater., 3, 93 Hobbs, 2002, The nanostructures of amorphous silicas, Microsc. Microanal., 8, 29, 10.1017/S1431927602010061 Yuan, 2001, Molecular dynamics refinement of topologically generated reconstructions of simulated irradiation cascades in silica networks, J. Nucl. Mater., 289, 71, 10.1016/S0022-3115(00)00703-0 Qin, 1995, Energy-filtered electron diffraction study of vitreous and amorphized silicas, J. Non-Cryst. Solids, 193, 456, 10.1016/0022-3093(95)00450-5 Elliott, 1995, Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses, J. Non-Cryst. Solids, 182, 40, 10.1016/0022-3093(94)00539-7 Keen, 2000, Total scattering studies of silica polymorphs: similarities in glass and disordered crystalline local structure, Miner. Mag., 64, 447, 10.1180/002646100549517 Aizenberg, 1996, Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates, Adv. Mater., 8, 222, 10.1002/adma.19960080307 Weiner, 2003, Biologically formed amorphous calcium carbonate, Connect. Tissue Res., 44, 214, 10.1080/03008200390181681 Beniash, 1997, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. Lond. B, 264, 461, 10.1098/rspb.1997.0066 Wilt, 1999, Matrix and mineral in the sea urchin larval skeleton, J. Struct. Biol., 126, 216, 10.1006/jsbi.1999.4105 Politi, 2004, Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase, Science, 306, 1161, 10.1126/science.1102289 Weiss, 2002, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool., 293, 478, 10.1002/jez.90004 Hasse, 2000, Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata, Chem.: Eur. J., 6, 3679, 10.1002/1521-3765(20001016)6:20<3679::AID-CHEM3679>3.0.CO;2-# Nassif, 2005, Amorphous layer around aragonite platelets in nacre, PNAS, 102, 12653, 10.1073/pnas.0502577102 Addadi, 2003, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater., 15, 959, 10.1002/adma.200300381 Landis, 1995, The strength of a calcified tissue depends in part on the molecular-structure and organization of its constituent mineral crystals in their organic matrix, Bone, 16, 533, 10.1016/8756-3282(95)00076-P Weiner, 1991, Crystal organization in rat bone lamellae, FEBS Lett., 285, 49, 10.1016/0014-5793(91)80722-F Zhang, 2003, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chem. Mater., 15, 3221, 10.1021/cm030080g Hartgerink, 2001, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science, 294, 1684, 10.1126/science.1063187 Tampieri, 2003, Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals, J. Biomed. Mater. Res. Part A, 67A, 618, 10.1002/jbm.a.10039 Ziv, 1996, Transitional structures in lamellar bone, Microsc. Res. Technol., 33, 203, 10.1002/(SICI)1097-0029(19960201)33:2<203::AID-JEMT10>3.0.CO;2-Y Boskey, 2003, Bone mineral crystal size, Osteoporosis Int., 14, S16, 10.1007/s00198-003-1468-2 He, 2003, Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1, Nat. Mater., 2, 552, 10.1038/nmat945 DiMasi, 2005, Laser light scattering studies of a polymer-induced liquid-precursor (PILP) process for mineralization, vol. 873E, K10.6.1 Banez, 1964, Correlated soft X-ray+electron-microscopic studies of selected areas of carious dentin, J. Dent. Res., 43, 850