Bone regeneration during distraction osteogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and softtissue preservation. Clin Orthop 1989;238:249–81.
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop 1989;239:263–85.
Cope JB, Samchukov ML. Regenerate bone formation and remodeling during mandibular osteodistraction. Angle Orthod 2000;70:99–111.
Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 2004;74:3–15.
Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg 1996;54:45–53.
Raghoebar GM, Heydenrijk K, Vissink A. Vertical distraction of the severely resorbed mandible. The Groningen distraction device. Int J Oral Maxillofac Surg 2000;29:416–20.
Raghoebar GM, Liem RS, Vissink A. Vertical distraction of the severely resorbed edentulous mandible: a clinical, histological and electron microscopic study of 10 treated cases. Clin Oral Implants Res 2002;13:558–65.
Perdijk FBT, van Strijen P. Augmentation of severe mandibular atrophy by vertical distraction osteogenesis. In: Samchukov ML, Cope JB, Cherkashin AM, editors. Craniofacial distraction osteogenesis. 1st ed. St. Louis: Mosby; 2001. p 433–7.
Jensen OT, Cockrell R, Kuhike L, Reed C. Anterior maxillary alveolar distraction osteogenesis: a prospective 5-year clinical study. Int J Oral Maxillofac Implants 2002;17:52–68.
Chiapasco M, Romeo E, Vogel G. Vertical distraction osteogenesis of edentulous ridges for improvement of oral implant positioning: a clinical report of preliminary results. Int J Oral Maxillofac Surg 2001;16:43–51.
Chiapasco M, Romeo E, Casentini P, Rimondini L. Alveolar distraction osteogenesis vs. vertical guided bone regeneration for the correction of vertically deficient edentulous ridges: a 1-3-year prospective study on humans. Clin Oral Implants Res 2004; 15:82–95.
Li G, Simpson AH, Kenwright J, Triffitt JT. Assessment of cell proliferation in regenerating bone during distraction osteogenesis at different distraction rates. J Orthop Res 1997;15:765–72.
Rowe NM, Mehrara BJ, Luchs JS, Dudziak ME, Steinbrech DS, Illei PB, Fernandez GJ, Gittes GK, Longaker MT. Angiogenesis during mandibular distraction osteogenesis. Ann Plast Surg 1999;42:470–5.
Choi IH, Ahn JH, Chung CY, Cho TJ. Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J Orthop Res 2000;18:698–705.
Choi IH, Chung CY, Cho TJ, Yoo WJ. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 2002;17:435–47.
Pacicca DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, Gerstenfeld LC, Einhorn TA. Expression of angiogenic factors during distraction osteogenesis. Bone 2003;33:889–98.
Eingartner C, Coerper S, Fritz J, Gaissmaier C, Koveker G, Weise K. Growth factors in distraction osteogenesis. Immunohistological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop 1999;23:253–9.
Liu Z, Luyten FP, Lammens J, Dequeker J. Molecular signaling in bone fracture healing and distraction osteogenesis. Histol Histopathol 1999;14:587–95.
Mehrara BJ, Rowe NM, Steinbrech DS, Dudziak ME, Saadeh PB, McCarthyJ G, Gittes GK, Longaker MT. Rat mandibular distraction osteogenesis: II. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression. Plast Reconstr Surg 1999;103:536–47.
Sato M, Yasui N, Nakase T, Kawahata H, Sugimoto M, Hirota S, Kitamura Y, Nomura S, Ochi T. Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res 1998;13:1221–31.
Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, Gittes GK, Longaker MT. Gene expression of TGFbeta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg 2000;105:2028–38.
Bouletreau PJ, Warren SM, Longaker MT. The molecular biology of distraction osteogenesis. J Craniomaxillofac Surg 2002;30:1–11.
Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al Yamani A, Apazidis A, Pacicca D, Clemens TL, Gerstenfeld LC. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 2004;34:849–61.
Amir LR, Becking A G, Jovanovic A, Perdijk FBT, Everts V, Bronckers ALJJ. Vertical distraction osteogenesis in the human mandible. A prospective morphometric study. Clin Oral Implants Res 2006;17:417–25.
Amir LR, Becking AG, Jovanovic A, Perdijk FBT, Everts V, Bronckers ALJJ. Formation of new bone during vertical distraction osteogenesis is related to the presence of blood vessels. Clin Oral Implants Res 2006;17:410–6.
Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop 1990;250:8–26.
Tay BK, Le AX, Gould SE, Helms JA. Histochemical and molecular analyses of distraction osteogenesis in a mouse model. J Orthop Res 1998;16:636–42.
Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 1999;87:57–66.
Gil-Albarova J, de Pablos J, Franzeb M, Canadell J. Delayed distraction in bone lengthening. Improved healing in lambs. Acta Orthop Scand 1992;63:604–6.
Yasui N, Kojimoto H, Sasaki K, Kitada A, Shimizu H, Shimomura Y. Factors affecting callus distraction in limb lengthening. Clin Orthop Relat Res 1993;293:55–60
Paccione MF, Mehrara BJ, Warren SM, Greenwald JA, Spector JA, Luchs JS, Longaker MT. Rat mandibular distraction osteogenesis: latency, rate, and rhythm determine the adaptive response. J Craniofac Surg 2001;12:175–82.
Aida T, Yoshioka I, Tominaga K, Fukuda J. Effects of latency period in a rabbit mandibular distraction osteogenesis. Int J Oral Maxillofac Surg 2003;32:54–62.
Singare S, Li D, Liu Y, Wu Z, Wang J. The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device. Biomed Eng Online 2006;5:18.
Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 1994;301:124–31.
Tavakoli K, Walsh WR, Bonar F, Smart R, Wulf S, Poole MD. The role of latency in mandibular osteodistraction. J Craniomaxillofac Surg 1998;26:209–19.
Troulis MJ, Glowacki J, Perrott DH, Kaban LB. Effects of latency and rate on bone formation in a porcine mandibular distraction model. J Oral Maxillofac Surg 2000;58:507–13.
Glowacki J, Shusterman EM, Troulis M, Holmes R, Perrott D, Kaban LB. Distraction osteogenesis of the porcine mandible: histomorphometric evaluation of bone. Plast Reconstruct Surg 2004;113:566–73.
Aronson J, Shen XC, Gao GG, Miller F, Quattlebaum T, Skinner RA, Badger TM, Lumpkin CK. Sustained proliferation accompanies distraction osteogenesis in the rat. J Orthop Res 1997;15:563–9.
Li G, Simpson AH, Kenwright J, Triffitt JT. Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res 1999;17:362–7.
Loboa EG, Fang TD, Parker DW, Warren SM, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J Orthop Res 2005;23:663–70.
Burger EH, Veldhuijzen JP. Influence of mechanical factors on bone formation, resorption and growth. In: Hall K, editor. Bone growth. Vol 7. Melbourne: CRC Press; 1993. p. 37–56.
Aronson J, Harrison BH, Stewart CL, Harp JH. The histology of distraction osteogenesis using different external fixators. Clin Orthop Relat Res 1989;241:106–16.
Warren SM, Mehrara BJ, Steinbrech DS, Paccione MF, Greenwald JA, Spector JA, Longaker MT. Rat mandibular distraction osteogenesis: part III. Gradual distraction versus acute lengthening. Plast Reconstruct Surg 2001;107:441–53.
Loboa EG, Fang TD, Warren SM, Lindsey DP, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone 2004;34:336–43.
Morgan EF, Longaker MT, Carter DR. Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol 2006;25:94–103.
Richards M, Goulet JA, Weiss JA, Waanders N, Schaffler MB, Goldstein SA. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Clin Orthop Relat Res 1998;355:S191–204.
Meyer U, Meyer T, Wiesmann HP, Stratmann U, Kruse-Losler B, Maas H, Joos U. The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 1999;57:1331–9.
Meyer U, Meyer T, Schlegel W, Scholz H, Joos U. Tissue differentiation and cytokine synthesis during strain-related bone formation in distraction osteogenesis. Br J Oral Maxillofac Surg 2001;39:22–9.
Fong KD, Nacamuli RP, Loboa EG, Henderson JH, Fang TD, Song HM, Cowan CM, Warren SM, Carter DR, Longaker MT. Equibiaxial tensile strain affects calvarial osteoblast biology. J Craniofac Surg 2003;14:348–55.
Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J Oral Maxillofac Surg 2005;63:499–504.
Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002;277:23934–41.
Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004;22:1283–9.
Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C. Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006;27:586–95.
Tong L, Buchman SR, Ignelzi MA, Rhee S, Goldstein SA. Focal adhesion kinase expression during mandibular distraction osteogenesis: evidence for mechanotransduction. Plast Reconstr Surg 2003;111:211–22.
Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br 1997;79:824–30.
Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 1999;32:255–66.
Li G, Simpson AH, Triffitt JT. The role of chondrocytes in intramembranous and endochondral ossification during distraction osteogenesis in the rabbit. Calcif Tissue Int 1999;64:310–7.
Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int 2000;24:25–33.
Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res 1990;250:43–9.
Karp NS, McCarthy JG. Schreiber JS, Sissons HA, Thorne CH. Membranous bone lengthening: a serial histological study. Ann Plast Surg 1992;29:2–7.
Swennen G, Dempf R, Schliephake H. Craniofacial distraction osteogenesis: a review of the literature. Part II. Experimental studies. Int J Oral Maxillofac Surg 2002;31:123–35.
Komuro Y, Akizuki T, Kurakata M, Ohmori K. Histological examination of regenerated bone through craniofacial bone distraction in clinical studies. J Craniofac Surg 1999;10:308–11.
Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 1998;355:S41–55.
Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P. Systemic regulation of angiogenesis and matrix degradation in bone regeneration - distraction osteogenesis compared to rigid fracture healing. Bone 2005;3:781–90.
Farhadieh RD, Dickinson R, Yu Y, Gianoutsos MP, Walsh WR. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible. J Craniofac Surg 1999;10:80–6.
al Ruhaimi KA. Comparison of different distraction rates in the mandible: an experimental investigation. Int J Oral Maxillofac Surg 2001;30:220–7.
Choi IH, Shim JS, Seong SC, Le MC, Song KY, Park SC, Chung CY, Cho TJ, Lee DY. Effect of the distraction rate on the activity of the osteoblast lineage in distraction osteogenesis of rat’s tibia. Immunostaining study of the proliferating cell nuclear antigen, osteocalcin, and transglutaminase C. Bull Hosp Jt Dis 1997;56:34–40.
Farhadieh RD, Gianoutsos MP, Dickinson R, Walsh WR. Effect of distraction rate on biomechanical, mineralization, and histologic properties of an ovine mandible model. Plast Reconstr Surg 2000;105:889–95.
King GJ, Liu ZJ, Wang LL, Chiu IY, Whelan MF, Huang GJ. Effect of distraction rate and consolidation period on bone density following mandibular osteodistraction in rats. Arch Oral Biol 2003;48:299–308.
Zimmermann CE, Thurmuller P, Troulis MJ, Perrott DH, Rahn B, Kaban LB. Histology of the porcine mandibular distraction wound. Int J Oral Maxillofac Surg 2005;34:411–9.
Richards M, Kozloff KM, Goulet JA, Goldstein SA. Increased distraction rates influence precursor tissue composition without affecting bone regeneration. J Bone Miner Res 2000;15:982–9.
Meyer T, Meyer U, Stratmann U, Wiesmann HP, Joos U. Identification of apoptotic cell death in distraction osteogenesis. Cell Biol Int 1999;23:439–46.
Amir LR, Jovanovic A, Perdijk FBT, Toyosawa S, Everts V, Bronckers, ALJJ. Immunolocalisation of SIBLING and RUNX2 proteins during vertical distraction osteogenesis in human mandible. J Histochem Cytochem 2007;55:1095–104.
Kawarizadeh A, Bourauel C, Gotz W, Jager A. Early response of periodontal ligament cells to mechanical stimulus in vivo. J Dent Res 2005;84:902–6.
Ziros PG, Basdra EK, Papavassilliou AG. Runx2: of bone and stretch. Int J Biochem Cell Biol 2008;40:1659–63.
Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T. Tensile mechanical strain upregulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J Oral Maxillofac Surg 2007;63:499–504.
Rawlinson SCF, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts and osteocytes’ early responses to mechanical strain. Bone 1996;19:609–14.
Ypey DL, Weidema AF, Hold KM, Vanderlaarse A, Ravesloot JH, van der Plas A, Nijweide PJ. Voltage, calcium, and stretch activated ionic channels and intracellular calcium bone cells. J Bone Miner Res 1992;7:S377–87.
Chen X, Macica CM, Ng KW, Broadus AE. Stretch-induced PTHrelated protein gene expression in osteoblasts. J Bone Miner Res 2005;20:1454–61.
Aarden EM, Nijweide PJ, van der Plas A, Alblas MJ, Mackie EJ, Horton MA, Helfrich MH. Adhesive properties of isolated chick osteocytes in vitro. Bone 1996;18:305–13.
Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, Yoshimoto Y, Ishikawa H, Chihara K, Takano-Yamamoto T, Fujita T, Mikuni-Takagaki Y. AlphaV beta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab 2006;24:498–504.
Dufour C, Holy X, Marie PJ. Transforming growth factor prevents osteoblast apoptosis induced by skeletal unloading via PI3k/Akt, Bcl-2 and phosphor-Bad signalling. Am J Physiol Endocrinol Metab 294:E794–801.
Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Nat Acad Sci U S A 2007;104:15941–6.
Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 1995;9:441–5.
Burger EH, Klein-Nulend J. Mechanotransduction in bone — role of the lacuno-canalicular network. FASEB J 1999;13:S101–12.
Perez-Amodio S, Beertsen W, Everts V. (Pre-)osteoclasts induce retraction of osteoblasts before their fusion to osteoclasts. J Bone Miner Res 2004;19:1722–31.
Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 2007;41:745–51.
Vezerides PS, Semeins CM, Chen Q, Klein Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 2006;348:1082–8.
Singla V, Reiter JF. The primary cilium as the cells’ antenna: signaling at a sensory organelle. Science 2006;313:629–33.
Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD. Cilialike structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 2006;281:30884–95.
McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 2006;54:1005–14.
Grundnes O, Reikeras O. Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop Scand 1992;63:487–91.
Aronson J, Shen X. Experimental healing of distraction osteogenesis comparing metaphyseal with diaphyseal sites. Clin Orthop Relat Res 1994;301:25–30.
Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 2003;6:1–14.
Resnick N, Gimbrone MA. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 1995;9:874–82.
Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998;32:338–45.
Ando J, Nomura H, Kamiya A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc Res 1987;33:62–70.
Hudlicka O. The response of muscle to enhanced and reduced activity. Baillieres Clin Endocrinol Metab 1990;4:417–39.
Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J Orthod Dentofac Orthop 1994;105:457–63.
Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem 2004;279:40007–16.
Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol 2000;153:1133–40.
in’ t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003;88:845–52.
Schor AM, Canfield AE, Sutton AB, Arciniegas E, Allen TD. Pericyte differentiation. Clin Orthop Relat Res 1995;313:81–91.
Reilly TM, Seldes R, Luchetti W, Brighton CT. Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop Relat Res 1998;346:95–103.
Lewinson D, Maor G, Rozen N, Rabinovich I, Stahl S, Rachmiel A. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system. Histochem Cell Biol 2000;116:381–8.
Kinner B, Spector M. Expression of smooth muscle actin in osteoblasts in human bone. J Orthop Res 2002;20:622–32.
Kasperk CH, Borcsok I, Schairer HU, Schneider U, Nawroth PP, Niethard FU, Ziegler R. Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int 1997;60:368–74.
Villars F, Bordenave L, Bareille R, Amedee J. Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 2000;79:672–85.
Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 2002;99:9656–61.
Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 2000;141:1667–74.
Yao Z, Lafage-Proust MH, Plouet J, Bloomfield S, Alexandre C, Vico L. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J Bone Miner Res 2004;19:1471–80.
Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 2002;111:61–73.
Li G, Bouxsein ML, Luppen C, Li XJ, Wood M, Seeherman HJ, Wozney JM, Simpson H. Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J Orthop Res 2002;20:779–88.
Eckhardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES, Hvid I. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to rabbit tibiae during distraction osteogenesis. J Orthop Res 2003;21:335–40.
Casap N, Venezia NB, Wilensky A, Samuni Y. VEGF facilitates periosteal distraction induced osteogenesis in rabbits: a microcomputerized tomography study. Tissue Eng Part A 2008;14:247–53.
Sheller MR, Crowther RS, Kinney JH, Yang J, Di Jorio S, Breunig T, Carney DH, Ryaby JT. Repair of rabbit segmental defects with the thrombin peptide TP508. J Orthop Res 2004;22:1094–9.
Wang H, Li X, Tomin E, Doty SB, Lane JM, Carney DH, Ryaby JT. Thrombin peptide (TP508) promotes fracture repair by upregulating inflammatory mediators, early growth factors, and increasing angiogenesis. J Orthop Res 2005;23:671–9.
Amir LR, Li G, Schoenmaker T, Everts V, Bronckers ALJJ. TP508 A quantitative analysis of the effect of thrombin peptide (TP 508) during distraction osteogenesis in rabbits. Cell Tissue Res 2007;330:35–44.
Schortinghuis J, Bronckers ALJJ, Stegenga B, Raghoebar GM, de Bont LG. Ultrasound to stimulate early bone formation in a distraction gap: a double blind randomised clinical pilot trial in the edentulous mandible. Arch Oral Biol 2005;50:411–20.
Schortinghuis J, Bronckers ALJJ, Gravendeel J, Stengenga B, Raghoebar GM. The effect of ultrasound on osteogenesis in the vertically distracted edentulous mandible. A double blind trial. Int J Oral Maxillofac Surg 2008;37:1014–21.
Mizumoto Y, Mosely T, Drews M, Cooper VN, Reddi AH. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am 2003;85A Suppl 3:124–30.
Cheung LK, Zheng LW. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction at different rates in an experimental model. J Craniofac Surg 2006;17:100–8.
Urbani G, Lombardo G, Santi E, Consolo U. Distraction osteogenesis to achieve mandibular vertical bone regeneration: a case report. Int J Periodont Restorative Dent 1999;19:321–31.
Klug CN, Millesi-Schobel GA, Millesi W, Watzinger F, Ewers R. Preprosthetic vertical distraction osteogenesis of the mandible using an L-shaped osteotomy and titanium membranes for guided bone regeneration. J Oral Maxillofac Surg 2001;59:1302–8.
Rachmiel A, Srouji S, Peled M. Alveolar ridge augmentation by distraction osteogenesis. Int J Oral Maxillofac Surg 2001;30:510–7.
McAllister BS. Histologic and radiographic evidence of vertical ridge augmentation utilizing distraction osteogenesis: 10 consecutively placed distractors. J Periodontol 2001;72:1767–79.
Uckan S, Haydar SG, Dolanmaz D. Alveolar distraction: analysis of 10 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:561–5.
Zaffe D, Bertoldi C, Palumbo C, Consolo U. Morphofunctional and clinical study on mandibular alveolar distraction osteogenesis. Clin Oral Implants Res 2002;13:550–7.
Hwang SJ, Jung JG, Jung JU, Kyung SH. Vertical alveolar bone distraction at molar region using lag screw principle. J Oral Maxillofac Surg 2004;62:787–94.
Robiony M, Toro C, Stucki-McCormick SU, Zerman N, Costa F, Politi M. The “FAD” (Floating Alveolar Device): a bidirectional distraction system for distraction osteogenesis of the alveolar process. J Oral Maxillofac Surg 2004;2:136–42.
Enislidis G, Fock N, Ewers R. Distraction osteogenesis with subperiosteal devices in edentulous mandibles. Br J Oral Maxillofac Surg 2005;43:399–403.
Saulacic N, Somoza-Martin M, Gandara-Vila P, Garcia-Garcia A. Relapse in alveolar distraction osteogenesis: an indication for overcorrection. J Oral Maxillofac Surg 2005;63:978–81.
Walker DA. Mandibular distraction osteogenesis for endosseous dental implants. J Can Dent Assoc 2005;71:171–5.