Bone marrow sparing in prostate cancer patients treated with Post-operative pelvic nodal radiotherapy – A proton versus photon comparison
Tài liệu tham khảo
Pollack, 2022, The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial, Lancet, 399, 1886, 10.1016/S0140-6736(21)01790-6
Zaorsky, 2021, Elective Nodal Radiotherapy for Prostate Cancer: For None, Some, or all?, Int J Radiat Oncol Biol Phys, 111, 965, 10.1016/j.ijrobp.2021.07.1699
De Meerleer, 2021, Elective nodal radiotherapy in prostate cancer, LancetOncol, 22, e348
Iorio, 2021, The Impact of Pelvic Nodal Radiotherapy on Hematologic Toxicity: A Systematic Review with Focus on Leukopenia, Lymphopenia and Future Perspectives in Prostate Cancer Treatment, Crit Rev Oncol Hematol, 168, 10.1016/j.critrevonc.2021.103497
Cozzarini, 2016, Hematologic Toxicity in Patients Treated With Postprostatectomy Whole- Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study, Int J Radiat Oncol Biol Phys, 95, 690, 10.1016/j.ijrobp.2016.01.022
Mauch, 1995, Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy, Int J Radiat Oncol Biol Phys, 31, 1319, 10.1016/0360-3016(94)00430-S
Rose, 2012, Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy, Int J Radiat Oncol Biol Phys, 83, 1185, 10.1016/j.ijrobp.2011.09.048
Mussano, 2010, Differential effect of ionizing radiation exposure on multipotent and differentiation-restricted bone marrow mesenchymal stem cells, J Cell Biochem, 111, 322, 10.1002/jcb.22699
McGuire, 2016, Using [(18)F]Fluorothymidine Imaged With Positron Emission Tomography to Quantify and Reduce Hematologic Toxicity Due to Chemoradiation Therapy for Pelvic Cancer Patients, Int J Radiat Oncol Biol Phys, 96, 228, 10.1016/j.ijrobp.2016.04.009
Mell, 2006, Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy, Int J Radiat Oncol Biol Phys, 66, 1356, 10.1016/j.ijrobp.2006.03.018
Carmona, 2014, Fat composition changes in bone marrow during chemotherapy and radiation therapy, Int J Radiat Oncol Biol Phys, 90, 155, 10.1016/j.ijrobp.2014.05.041
Bolan, 2013, Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients, J Magn Reson Imaging, 38, 1578, 10.1002/jmri.24071
Lambin, 2020, Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy, Semin Radiat Oncol, 30, 187, 10.1016/j.semradonc.2019.12.003
Sanguineti, 2019, Leukotoxicity after moderately Hypofractionated radiotherapy versus conventionally fractionated dose escalated radiotherapy for localized prostate Cancer: a secondary analysis from a randomized study, Radiat Oncol, 14, 10.1186/s13014-019-1223-2
Withers, 1985, Biologic basis for altered fractionation schemes, Cancer, 55, 2086, 10.1002/1097-0142(19850501)55:9+<2086::AID-CNCR2820551409>3.0.CO;2-1
Tarbell, 1987, Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man, Int J Radiat Oncol Biol Phys, 13, 1065, 10.1016/0360-3016(87)90046-0
MacLennan IC, Kay HE. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation. Cancer 1978;41:108–111. https://doi.org/10.1002/1097-0142(197801)41:1<108::aid-cncr2820410116>3.0.co;2-z.
Nakamura, 1990, Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay, Radiat Res, 123, 224, 10.2307/3577549
Mell, 2017, Bone Marrow-sparing Intensity Modulated Radiation Therapy With Concurrent Cisplatin For Stage IB-IVA Cervical Cancer: An International Multicenter Phase II Clinical Trial (INTERTECC-2), Int J Radiat Oncol Biol Phys, 97, 536, 10.1016/j.ijrobp.2016.11.027
Noy M, Soliman D, Karp M, Studensky M, Abramowitz M, Dogan N, et al. PTV margins for postoperative pelvic nodal radiotherapy (PNRT) using a dose accumulation workflow. Radiother Oncol 2021, ESTRO 2021. PO-1553.
Paganetti, 2019, Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy, Med Phys, 46, e53, 10.1002/mp.13390
Kataria, 2012, Homogeneity Index: An objective tool for assessment of conformal radiation treatments, J Med Phys, 37, 207, 10.4103/0971-6203.103606
Kutcher, 1989, Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method, Int J Radiat Oncol Biol Phys, 16, 1623, 10.1016/0360-3016(89)90972-3
Kutcher, 1991, Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations, Int J Radiat Oncol Biol Phys, 21, 137, 10.1016/0360-3016(91)90173-2
Lyman, 1985, Complication probability as assessed from dose-volume histograms, Radiat Res Suppl, 8, S13, 10.2307/3583506
Niemierko, 1999, A Generalized Concept of Equivalent Uniform Dose (EUD), Med Phys, 26, 1100
Luxton, 2008, A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD), Phys Med Biol, 53, 23, 10.1088/0031-9155/53/1/002
Yoshimura, 2016, NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies - A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT), Phys Med, 32, 1095, 10.1016/j.ejmp.2016.08.007
Bazan, 2012, Normal tissue complication probability modeling of acute hematologic toxicity in patients treated with intensity-modulated radiation therapy for squamous cell carcinoma of the anal canal, Int J Radiat Oncol Biol Phys, 84, 700, 10.1016/j.ijrobp.2011.12.072
Bazan, 2013, Impact of chemotherapy on normal tissue complication probability models of acute hematologic toxicity in patients receiving pelvic intensity modulated radiation therapy, Int J Radiat Oncol Biol Phys, 87, 983, 10.1016/j.ijrobp.2013.09.017
Damen, 2021, The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis, Int J Radiat Oncol Biol Phys, 111, 936, 10.1016/j.ijrobp.2021.07.1695
Venkatesulu, 2018, A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors, Crit Rev Oncol Hematol, 123, 42, 10.1016/j.critrevonc.2018.01.003
Schad, 2019, Radiation-related Lymphopenia after Pelvic Nodal Irradiation for Prostate Cancer, Adv Radiat Oncol, 4, 323, 10.1016/j.adro.2019.01.005
M. Miszczyk W. Majewski Hematologic Toxicity of Conformal Radiotherapy and Intensity Modulated Radiotherapy in Prostate and Bladder Cancer Patients Asian Pac J Cancer Prev 19 2018 2803 2806 https://doi.org/10.22034/APJCP.2018.19.10.2803.
Pinkawa, 2015, Early hematologic changes during prostate cancer radiotherapy predictive for late urinary and bowel toxicityFrühe hämatologische Veränderungen während der Radiotherapie beim Prostatakarzinom prädiktiv für späte Miktions- und Darmbeschwerden, Strahlenther Onkol, 191, 771, 10.1007/s00066-015-0841-3
Rancati, 2018, PV-0627: Hematologic toxicity after whole-pelvis irradiation: results of a longitudinal observational study, Radiother Oncol, 127, S332, 10.1016/S0167-8140(18)30937-X
Sini, 2016, Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation, Radiother Oncol, 118, 79, 10.1016/j.radonc.2015.11.020
Danckaert, 2022, Impact of radiotherapy parameters on the risk of lymphopenia in urological tumors: a systematic review of the literature, Radiother Oncol, 2022, 64, 10.1016/j.radonc.2022.02.030
T.J. Whitaker D.M. Routman H. Schultz W.S. Harmsen K.S. Corbin W.W. Wong et al. IMPT versus VMAT for Pelvic Nodal Irradiation in Prostate Cancer: A Dosimetric Comparison Int J Part Ther 5 2019 11 23 https://doi.org/10.14338/IJPT-18-00048.1.
Tran, 2017, Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases, Radiat Oncol, 12, 10.1186/s13014-016-0761-0
Rana, 2014, Proton Therapy vs. VMAT for Prostate Cancer: A Treatment Planning Study, Int J Part Ther, 1, 22, 10.14338/IJPT.13-00003.1
Dinges, 2015, Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties, Radiother Oncol, 115, 373, 10.1016/j.radonc.2015.05.005
Prasad, 2018, Absolute volume of active bone marrow and total bone marrow spared in anal cancer patients using intensity modulated proton versus volumetric arc therapy, J Radiat Oncol, 7, 69, 10.1007/s13566-017-0329-0
Anand, 2015, Scanning proton beam therapy reduces normal tissue exposure in pelvic radiotherapy for anal cancer, Radiother Oncol, 117, 505, 10.1016/j.radonc.2015.10.027
Press, 2022, Bone Marrow Suppression during Postoperative Radiation for Bladder Cancer and Comparative Benefit of Proton Therapy—Phase 2 Trial Secondary Analysis, Int J Part Ther, 8, 1, 10.14338/IJPT-21-00003.1
T. Meier A. Mascia E. Wolf J. Kharofa Dosimetric Comparison of Intensity-Modulated Proton Therapy and Volumetric-Modulated Arc Therapy in Anal Cancer Patients and the Ability to Spare Bone Marrow Int J Part Ther 4 2017 11 17 https://doi.org/10.14338/IJPT-17-00017.
Colaco, 2014, Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer, J Gastrointest Oncol, 5, 3
Ladbury, 2019, Impact of Radiation Dose to the Host Immune System on Tumor Control and Survival for Stage III Non-Small Cell Lung Cancer Treated with Definitive Radiation Therapy, Int J Radiat Oncol Biol Phys, 105, 346, 10.1016/j.ijrobp.2019.05.064
Baré, 2022, Lymphocyte-sparing pelvic radiotherapy for prostate cancer: An in-silico study, Phys Imaging Radiat Oncol, 23, 127, 10.1016/j.phro.2022.07.006
François, 2013, Inflammation and immunity in radiation damage to the gut mucosa, Biomed Res Int, 2013, 1, 10.1155/2013/123241
