Bone marrow sparing in prostate cancer patients treated with Post-operative pelvic nodal radiotherapy – A proton versus photon comparison

Physica Medica - Tập 112 - Trang 102644 - 2023
Mariluz De Ornelas1, Giuseppe Carlo Iorio2, Elizabeth Bossart1, Umberto Ricardi2, Crystal Seldon1, Alan Dal Pra1, Michael Butkus1
1Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
2Department of Oncology, University of Torino, 10125 Torino, Italy

Tài liệu tham khảo

Pollack, 2022, The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial, Lancet, 399, 1886, 10.1016/S0140-6736(21)01790-6 Zaorsky, 2021, Elective Nodal Radiotherapy for Prostate Cancer: For None, Some, or all?, Int J Radiat Oncol Biol Phys, 111, 965, 10.1016/j.ijrobp.2021.07.1699 De Meerleer, 2021, Elective nodal radiotherapy in prostate cancer, LancetOncol, 22, e348 Iorio, 2021, The Impact of Pelvic Nodal Radiotherapy on Hematologic Toxicity: A Systematic Review with Focus on Leukopenia, Lymphopenia and Future Perspectives in Prostate Cancer Treatment, Crit Rev Oncol Hematol, 168, 10.1016/j.critrevonc.2021.103497 Cozzarini, 2016, Hematologic Toxicity in Patients Treated With Postprostatectomy Whole- Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study, Int J Radiat Oncol Biol Phys, 95, 690, 10.1016/j.ijrobp.2016.01.022 Mauch, 1995, Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy, Int J Radiat Oncol Biol Phys, 31, 1319, 10.1016/0360-3016(94)00430-S Rose, 2012, Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy, Int J Radiat Oncol Biol Phys, 83, 1185, 10.1016/j.ijrobp.2011.09.048 Mussano, 2010, Differential effect of ionizing radiation exposure on multipotent and differentiation-restricted bone marrow mesenchymal stem cells, J Cell Biochem, 111, 322, 10.1002/jcb.22699 McGuire, 2016, Using [(18)F]Fluorothymidine Imaged With Positron Emission Tomography to Quantify and Reduce Hematologic Toxicity Due to Chemoradiation Therapy for Pelvic Cancer Patients, Int J Radiat Oncol Biol Phys, 96, 228, 10.1016/j.ijrobp.2016.04.009 Mell, 2006, Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy, Int J Radiat Oncol Biol Phys, 66, 1356, 10.1016/j.ijrobp.2006.03.018 Carmona, 2014, Fat composition changes in bone marrow during chemotherapy and radiation therapy, Int J Radiat Oncol Biol Phys, 90, 155, 10.1016/j.ijrobp.2014.05.041 Bolan, 2013, Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients, J Magn Reson Imaging, 38, 1578, 10.1002/jmri.24071 Lambin, 2020, Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy, Semin Radiat Oncol, 30, 187, 10.1016/j.semradonc.2019.12.003 Sanguineti, 2019, Leukotoxicity after moderately Hypofractionated radiotherapy versus conventionally fractionated dose escalated radiotherapy for localized prostate Cancer: a secondary analysis from a randomized study, Radiat Oncol, 14, 10.1186/s13014-019-1223-2 Withers, 1985, Biologic basis for altered fractionation schemes, Cancer, 55, 2086, 10.1002/1097-0142(19850501)55:9+<2086::AID-CNCR2820551409>3.0.CO;2-1 Tarbell, 1987, Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man, Int J Radiat Oncol Biol Phys, 13, 1065, 10.1016/0360-3016(87)90046-0 MacLennan IC, Kay HE. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation. Cancer 1978;41:108–111. https://doi.org/10.1002/1097-0142(197801)41:1<108::aid-cncr2820410116>3.0.co;2-z. Nakamura, 1990, Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay, Radiat Res, 123, 224, 10.2307/3577549 Mell, 2017, Bone Marrow-sparing Intensity Modulated Radiation Therapy With Concurrent Cisplatin For Stage IB-IVA Cervical Cancer: An International Multicenter Phase II Clinical Trial (INTERTECC-2), Int J Radiat Oncol Biol Phys, 97, 536, 10.1016/j.ijrobp.2016.11.027 Noy M, Soliman D, Karp M, Studensky M, Abramowitz M, Dogan N, et al. PTV margins for postoperative pelvic nodal radiotherapy (PNRT) using a dose accumulation workflow. Radiother Oncol 2021, ESTRO 2021. PO-1553. Paganetti, 2019, Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy, Med Phys, 46, e53, 10.1002/mp.13390 Kataria, 2012, Homogeneity Index: An objective tool for assessment of conformal radiation treatments, J Med Phys, 37, 207, 10.4103/0971-6203.103606 Kutcher, 1989, Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method, Int J Radiat Oncol Biol Phys, 16, 1623, 10.1016/0360-3016(89)90972-3 Kutcher, 1991, Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations, Int J Radiat Oncol Biol Phys, 21, 137, 10.1016/0360-3016(91)90173-2 Lyman, 1985, Complication probability as assessed from dose-volume histograms, Radiat Res Suppl, 8, S13, 10.2307/3583506 Niemierko, 1999, A Generalized Concept of Equivalent Uniform Dose (EUD), Med Phys, 26, 1100 Luxton, 2008, A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD), Phys Med Biol, 53, 23, 10.1088/0031-9155/53/1/002 Yoshimura, 2016, NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies - A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT), Phys Med, 32, 1095, 10.1016/j.ejmp.2016.08.007 Bazan, 2012, Normal tissue complication probability modeling of acute hematologic toxicity in patients treated with intensity-modulated radiation therapy for squamous cell carcinoma of the anal canal, Int J Radiat Oncol Biol Phys, 84, 700, 10.1016/j.ijrobp.2011.12.072 Bazan, 2013, Impact of chemotherapy on normal tissue complication probability models of acute hematologic toxicity in patients receiving pelvic intensity modulated radiation therapy, Int J Radiat Oncol Biol Phys, 87, 983, 10.1016/j.ijrobp.2013.09.017 Damen, 2021, The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis, Int J Radiat Oncol Biol Phys, 111, 936, 10.1016/j.ijrobp.2021.07.1695 Venkatesulu, 2018, A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors, Crit Rev Oncol Hematol, 123, 42, 10.1016/j.critrevonc.2018.01.003 Schad, 2019, Radiation-related Lymphopenia after Pelvic Nodal Irradiation for Prostate Cancer, Adv Radiat Oncol, 4, 323, 10.1016/j.adro.2019.01.005 M. Miszczyk W. Majewski Hematologic Toxicity of Conformal Radiotherapy and Intensity Modulated Radiotherapy in Prostate and Bladder Cancer Patients Asian Pac J Cancer Prev 19 2018 2803 2806 https://doi.org/10.22034/APJCP.2018.19.10.2803. Pinkawa, 2015, Early hematologic changes during prostate cancer radiotherapy predictive for late urinary and bowel toxicityFrühe hämatologische Veränderungen während der Radiotherapie beim Prostatakarzinom prädiktiv für späte Miktions- und Darmbeschwerden, Strahlenther Onkol, 191, 771, 10.1007/s00066-015-0841-3 Rancati, 2018, PV-0627: Hematologic toxicity after whole-pelvis irradiation: results of a longitudinal observational study, Radiother Oncol, 127, S332, 10.1016/S0167-8140(18)30937-X Sini, 2016, Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation, Radiother Oncol, 118, 79, 10.1016/j.radonc.2015.11.020 Danckaert, 2022, Impact of radiotherapy parameters on the risk of lymphopenia in urological tumors: a systematic review of the literature, Radiother Oncol, 2022, 64, 10.1016/j.radonc.2022.02.030 T.J. Whitaker D.M. Routman H. Schultz W.S. Harmsen K.S. Corbin W.W. Wong et al. IMPT versus VMAT for Pelvic Nodal Irradiation in Prostate Cancer: A Dosimetric Comparison Int J Part Ther 5 2019 11 23 https://doi.org/10.14338/IJPT-18-00048.1. Tran, 2017, Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases, Radiat Oncol, 12, 10.1186/s13014-016-0761-0 Rana, 2014, Proton Therapy vs. VMAT for Prostate Cancer: A Treatment Planning Study, Int J Part Ther, 1, 22, 10.14338/IJPT.13-00003.1 Dinges, 2015, Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties, Radiother Oncol, 115, 373, 10.1016/j.radonc.2015.05.005 Prasad, 2018, Absolute volume of active bone marrow and total bone marrow spared in anal cancer patients using intensity modulated proton versus volumetric arc therapy, J Radiat Oncol, 7, 69, 10.1007/s13566-017-0329-0 Anand, 2015, Scanning proton beam therapy reduces normal tissue exposure in pelvic radiotherapy for anal cancer, Radiother Oncol, 117, 505, 10.1016/j.radonc.2015.10.027 Press, 2022, Bone Marrow Suppression during Postoperative Radiation for Bladder Cancer and Comparative Benefit of Proton Therapy—Phase 2 Trial Secondary Analysis, Int J Part Ther, 8, 1, 10.14338/IJPT-21-00003.1 T. Meier A. Mascia E. Wolf J. Kharofa Dosimetric Comparison of Intensity-Modulated Proton Therapy and Volumetric-Modulated Arc Therapy in Anal Cancer Patients and the Ability to Spare Bone Marrow Int J Part Ther 4 2017 11 17 https://doi.org/10.14338/IJPT-17-00017. Colaco, 2014, Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer, J Gastrointest Oncol, 5, 3 Ladbury, 2019, Impact of Radiation Dose to the Host Immune System on Tumor Control and Survival for Stage III Non-Small Cell Lung Cancer Treated with Definitive Radiation Therapy, Int J Radiat Oncol Biol Phys, 105, 346, 10.1016/j.ijrobp.2019.05.064 Baré, 2022, Lymphocyte-sparing pelvic radiotherapy for prostate cancer: An in-silico study, Phys Imaging Radiat Oncol, 23, 127, 10.1016/j.phro.2022.07.006 François, 2013, Inflammation and immunity in radiation damage to the gut mucosa, Biomed Res Int, 2013, 1, 10.1155/2013/123241