Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy

Acta Biomaterialia - Tập 7 Số 4 - Trang 1902-1912 - 2011
Sheldon A. Bernard1, Vamsi Krishna Balla2, Neal M. Davies3, Susmita Bose2, Amit Bandyopadhyay2
1School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
2W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
3College of Pharmacy, Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shabalovskaya, 1996, On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys, Biomed Mater Eng, 6, 267

Itin, 1994, Mechanical properties and shape-memory of porous nitinol, Mater Charact, 32, 179, 10.1016/1044-5803(94)90087-6

Silbersteinm, 2000

Fischer, 2004, Applications of shape memory alloys in medical instruments, Minim Invasive Therapy Allied Technol, 13, 248, 10.1080/13645700410018046

Shabalovskaya, 2008, Critical overview of nitinol surfaces and their modifications for medical applications, Acta Biomater, 4, 447, 10.1016/j.actbio.2008.01.013

Barison, 2004, Characterization of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques, Electrochem Acta, 50, 11, 10.1016/j.electacta.2004.07.007

Fushimi, 2006, Electropolishing of NiTi shape memory alloys in methanolic H2SO4, Electrochem Acta, 52, 1290, 10.1016/j.electacta.2006.07.030

Shi, 2007, Improvement in corrosion resistance of NiTi by anodization in acetic acid, Mater Lett, 61, 2385, 10.1016/j.matlet.2006.09.020

Kawakita, 2007, High voltage pulse anodization of a NiTi shape memory alloy, J Electrochem Soc, 154, C294, 10.1149/1.2720768

Shabalovskaya, 2003, Surface conditions of nitinol wires, tubing, and as-cast alloys: the effect of chemical etching, aging in boiling water, and heat treatment, J Biomed Mater Res, 65B, 193, 10.1002/jbm.b.10001

Michiardi, 2006, New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility, J Biomed Mat Res, 77B, 249, 10.1002/jbm.b.30441

Chen, 2003, Study on the formation of an apatite layer on NiTi shape memory alloy using a chemical treatment method, Surf Coat Technol, 173, 229, 10.1016/S0257-8972(03)00733-3

Firstov, 2002, Surface oxidation of NiTi shape memory alloys, Biomaterials, 23, 4863, 10.1016/S0142-9612(02)00244-2

Lotkov, 2005, Titanium nickelide-based alloys: surface modifications with ion beam, plasma flows and chemical treatment, Phys Metals Metall, 99, 508

Cui, 2005, The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloys in Hanks solution, Surf Coat Technol, 192, 347, 10.1016/j.surfcoat.2004.06.033

Kobayashi, 2005, Diamond-like carbon coatings on orthodontic archwires, Diamond Relat Mater, 14, 1094, 10.1016/j.diamond.2004.11.036

Cheng, 2006, Surface characterization and electrochemical studies of biomedical NiTi alloy coated with TiN by PIIID, Mater Sci Eng A, 438–440, 1146, 10.1016/j.msea.2005.12.073

Choi, 2003, Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets, Biomaterials, 24, 3689, 10.1016/S0142-9612(03)00241-2

Shevchenko, 2004, Studies of surface modified NiTi alloy, Appl Surf Sci, 235, 126, 10.1016/j.apsusc.2004.05.273

Hebing, 2008, Effect of martensitic transformation on the performance of coated NiTi surfaces, Mater Sc Eng, 486, 461, 10.1016/j.msea.2007.09.029

Balla, 2010, Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties, Acta Biomater, 6, 3349, 10.1016/j.actbio.2010.01.046

Balla, 2010, Direct laser processing of tantalum coating on Ti for bone replacement structures, Acta Biomater, 6, 2329, 10.1016/j.actbio.2009.11.021

España, 2010, Design and fabrication of CoCrMo based novel structures for load bearing implants using laser engineered net shaping, Mater Sci Eng C, 30, 50, 10.1016/j.msec.2009.08.006

Balla, 2009, Laser assisted Zr/ZrO2 coating on Ti for load-bearing implants, Acta Biomater, 5, 2800, 10.1016/j.actbio.2009.03.032

Balla, 2009, Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS), Acta Biomater, 5, 1831, 10.1016/j.actbio.2009.01.011

Balla, 2009, Fabrication of porous NiTi shape memory alloy samples using laser engineered net shaping, J Biomed Mater Res B Appl Biomater, 89B, 481, 10.1002/jbm.b.31238

Bandyopadhyay, 2009, Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J Mater Sci Mater Med, 20, S29, 10.1007/s10856-008-3478-2

Balla, 2008, Engineered porous metals for implants, JOM, 60, 45, 10.1007/s11837-008-0059-2

Balla, 2007, Low stiffness porous Ti structures for load bearing implants, Acta Biomater, 3, 997, 10.1016/j.actbio.2007.03.008

Balla, 2007, Laser processing of net-shape NiTi shape memory alloy, Metall Mater Trans A, 38A, 1096

Fan, 2004, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys, Acta Mater, 52, 4351, 10.1016/j.actamat.2004.06.002

Thompson, 1983, Treatise on materials science and technology, 23, 205

Thompson, 1997, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films, 297, 192, 10.1016/S0040-6090(96)09440-0

Das, 2007, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater, 3, 573, 10.1016/j.actbio.2006.12.003

Chrzanowski, 2008, Effect of surface treatment on the bioactivity of nickel–titanium, Acta Biomater, 4, 1969, 10.1016/j.actbio.2008.05.010

Mori, 1991, Adsorption and lubrication, J Tribol, 36, 161

Wenzel, 1949, Surface roughness and contact angle, J Phys Chem, 53, 1466, 10.1021/j150474a015

Onda, 1996, Super-water-repellent fractal surfaces, Langmuir, 12, 2125, 10.1021/la950418o

Michiardi, 2007, The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces, Biomaterials, 28, 586, 10.1016/j.biomaterials.2006.09.040

Webb, 1998, Relative importance of surface wettability and charged functional groups on NIH3T3 fibroblast attachment, spreading and cytoskeletal organization, J Biomed Mater Res, 41, 422, 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K

Roy, 2010, Comparison of tantalum and hydroxyapatite coatings on titanium for applications in load bearing implants, Adv Eng Mater Adv Biomater, 12, B637, 10.1002/adem.201080017

Zhang, 2004, Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior, J Biomed Mater Res, 68A, 383, 10.1002/jbm.a.20063

Redey, 2000, Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy, J Biomed Mater Res, 50, 353, 10.1002/(SICI)1097-4636(20000605)50:3<353::AID-JBM9>3.0.CO;2-C

Anselme, 2000, Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses, J Biomed Mater Res A, 49, 155, 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J

Lovmand, 2009, The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and minerlization, Biomaterials, 30, 2015, 10.1016/j.biomaterials.2008.12.081

Schildhauer, 2009, Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials, J Biomed Mater Res A, 88A, 332, 10.1002/jbm.a.31850

Redey, 1999, Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies, J Biomed Mater Res, 45, 140, 10.1002/(SICI)1097-4636(199905)45:2<140::AID-JBM9>3.0.CO;2-I

Schroeder, 1962, Abnormal trace elements in man: nickel, J Chron Dis, 15, 51, 10.1016/0021-9681(62)90101-7

Bour, 1994, Establishment of nickel-specific T cell lines from patients with allergic contact dermatitis: comparison of different protocols, Clin Immunol Immunopathol, 73, 142, 10.1006/clin.1994.1180

Chu, 2008, Effects of anodic oxidation in H2SO4 electrolyte on the biocompatibility of NiTi shape memory alloy, Mater Lett, 62, 3512, 10.1016/j.matlet.2008.03.030