Bone as a Structural Material

Advanced healthcare materials - Tập 4 Số 9 - Trang 1287-1304 - 2015
Elizabeth A. Zimmermann1, Robert O. Ritchie2,3
1University Medical Center Hamburg-Eppendorf 22529 Hamburg Germany
2Department of Materials Science & Engineering University of California Berkeley CA 94720 USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Tóm tắt

As one of the most important natural materials, cortical bone is a composite material comprising assemblies of tropocollagen molecules and nanoscale hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi‐functional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are vital physiologically. Like many mineralized tissues, bone can resist deformation and fracture from the nature of its hierarchical structure, which spans molecular to macroscopic length‐scales. In fact, bone derives its fracture resistance with a multitude of deformation and toughening mechanisms that are active at most of these dimensions. It is shown that bone's strength and ductility originate primarily at the scale of the nano to submicrometer structure of its mineralized collagen fibrils and fibers, whereas bone toughness is additionally generated at much larger, micro‐ to near‐millimeter, scales from crack‐tip shielding associated with interactions between the crack path and the microstructure. It is further shown how the effectiveness with which bone's structural features can resist fracture at small to large length‐scales can become degraded by biological factors such as aging and disease, which affect such features as the collagen cross‐linking environment, the homogeneity of mineralization, and the density of the osteonal structures.

Từ khóa


Tài liệu tham khảo

Currey J. D., 2006, Bones: Structure and Mechanics

10.1016/j.bone.2009.02.009

10.1016/j.actbio.2009.11.026

10.1002/adma.201202713

10.1038/ncomms3634

10.1126/science.1220854

10.1038/361511a0

10.1126/science.1116994

10.1146/annurev.matsci.28.1.271

10.1007/s11837-012-0298-0

10.1073/pnas.1107966108

10.1016/0014-5793(86)80993-0

10.1073/pnas.86.24.9822

10.1002/(SICI)1097-0029(19960201)33:2<192::AID-JEMT9>3.0.CO;2-V

10.1007/BF02555796

10.1007/BF02556154

10.1006/jsbi.1996.0066

DHLNL and HLNL are respectively dehydro‐dihydroxylysinonorleucine and hydroxylysinonorleucine.

10.1016/S0047-6374(01)00225-1

Hodge A. J., 1963, Aspects of Protein Structure, 289

10.1042/bj2520495

Odetti P., 2005, Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, and Disease, 710

10.1006/abio.1997.2350

10.1016/S0021-9258(20)88225-8

Martin R. B., 1989, Structure, Function, and Adaptation of Compact Bone

10.1002/ar.a.20214

10.1038/nmat3115

10.1146/annurev-matsci-070909-104427

10.1016/0025-5416(88)90547-2

10.1023/A:1018655917051

10.1201/9781420058215

10.1038/nmat2221

The fracture toughness KIc is defined as the critical stress intensity at fracture instability; if measured correctly it strictly characterizes the crack‐initiation toughness.

The fracture toughness can be expressed as the critical value of the stress intensityKfor unstable fracture in the presence of a pre‐existing crack i.e. in mode I whenK=Yσapp(πa)½=KIc whereσappis the applied stress ais the crack length andYis a function (of order unity) of crack size and geometry. Here the stress intensityKis a measure of the amplitude of the elastic stress and displacement fields at the crack tip. Alternatively the toughness can be measured as a critical value of the strain‐energy release rate Gc defined as the change in potential energy per unit increase in crack area in an elastic solid. In the presence of local plasticity that is no longer small enough to be ignored both approaches can also be expressed in terms of theJ‐integral defined as the amplitude of the nonlinear elastic stress and displacement fields at the crack tip and/or as the change in potential energy per unit increase in crack area in a nonlinear elastic solid. Where nominally elastic conditions prevail J=G.

10.1088/0957-4484/18/29/295102

10.1002/1097-4628(20010103)79:1<134::AID-APP160>3.0.CO;2-E

10.1016/j.biomaterials.2011.08.013

10.1021/nl051584b

10.1038/ncomms2720

10.1098/rsif.2009.0390

10.1016/j.jbiomech.2008.02.017

10.3109/03008200009067667

10.1016/j.matbio.2011.11.005

10.1038/nmat832

10.1038/nmat1428

10.1016/j.bone.2010.02.014

10.1126/science.1164865

10.1016/j.bone.2008.07.238

10.1038/nmat1866

10.1007/s10237-011-0349-4

10.1016/S8756-3282(97)00004-5

10.1080/09243860500095471

10.1111/j.1151-2916.1990.tb06493.x

10.1016/j.bone.2004.02.001

10.1007/BF02651656

Stress‐intensity factors can be defined for three modes of crack displacement specifically KIfor mode I under tensile opening KIIfor mode II in shear KIIIfor mode III in anti‐plane shear as described in greater in Figure.

10.1016/j.biomaterials.2009.06.017

10.1016/j.biomaterials.2010.03.056

10.1111/j.1151-2916.1989.tb05957.x

10.1016/0001-6160(89)90017-5

10.1016/0167-6636(94)00063-8

10.1016/j.bone.2011.11.004

10.1115/1.3176078

10.1016/0021-9290(96)00009-7

10.1016/j.msec.2005.08.008

10.1016/0021-9290(84)90076-9

10.1016/j.actbio.2010.09.027

10.1016/j.biomaterials.2014.03.066

10.1016/0020-7683(89)90021-8

Comparable effects can occur in bone with aging irradiation damage and disease where abnormal mineralization and/or cross‐linking profiles within the matrix can reduce the relative inhomogeneity between the bone matrix and the cement lines again contributing to less deflected crack paths.

10.1073/pnas.1201513109

10.1016/0140-6736(93)92555-8

10.1172/JCI113523

Burr D. B., 2004, J. Musculoskelet. Neuronal Interact., 4, 184

10.1016/j.msec.2005.08.021

10.1016/S8756-3282(00)00434-8

10.1016/j.jmbbm.2011.05.020

10.1093/ajcn/80.6.1689S

10.1210/edrv.22.4.0437

10.1383/medc.2005.33.12.70

10.1359/jbmr.090728

10.1126/scitranslmed.3006286

10.1016/S0046-8177(84)80028-3

10.1038/nrendo.2011.81

Cole W. G., 1997, Clin. Orthop. Relat. Res., 235

10.1097/00003086-200208000-00003

10.1016/S0140-6736(04)16051-0

10.1016/S8756-3282(00)00269-6

10.1016/0945-053X(94)90200-3

10.1073/pnas.90.5.1701

10.1016/S8756-3282(01)00594-4

10.1006/jmbi.1997.1106

10.1016/S8756-3282(96)00305-5

10.1002/jbmr.2172

Woven bone is type of bone structure produced during fast bone growth. It is often present in young individuals or during fracture healing. The overall structure is characterized by a random orientation of collagen and mineral high mineralization as well as high porosity.

10.1002/jor.1100140320

10.1016/S0021-9290(97)00088-2

10.1016/j.bone.2008.04.027

10.1016/j.bpj.2011.11.3999

10.3109/03008209609029199

10.1080/713713620

10.1016/S8756-3282(99)00027-7

10.1359/jbmr.080907

10.1007/s00586-011-2133-7

10.1016/0221-8747(81)90039-4

10.1359/jbmr.06s203

10.1016/j.bone.2013.10.024

Mirra J. M., 1995, Skeletal Radiol., 24, 163

10.1385/BMM:1:2:115

10.1302/0301-620X.52B2.252

10.1007/BF00267839

10.1359/jbmr.2000.15.11.2123

10.1359/jbmr.2002.17.3.465

Dove J., 1980, J. Bone Joint Surg. Br., 62, 12, 10.1302/0301-620X.62B1.7351428

10.1359/jbmr.090709

10.1002/jbmr.2340

10.1002/art.1780231005

10.1002/art.1780231006

10.1038/srep00435

10.1016/j.bone.2010.02.025