Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms

Stem cells translational medicine - Tập 6 Số 4 - Trang 1273-1285 - 2017
Ben Mead1, Stanislav I. Tomarev1
1Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA

Tóm tắt

Abstract

The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30–100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate exosomes from bone marrow-derived MSC (BMSC) and test them in a rat optic nerve crush (ONC) model. Treatment of primary retinal cultures with BMSC-exosomes demonstrated significant neuroprotective and neuritogenic effects. Twenty-one days after ONC and weekly intravitreal exosome injections; optical coherence tomography, electroretinography, and immunohistochemistry was performed. BMSC-derived exosomes promoted statistically significant survival of RGC and regeneration of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA, demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after knockdown of Argonaute-2, a key miRNA effector molecule. This study supports the use of BMSC-derived exosomes as a cell-free therapy for traumatic and degenerative ocular disease.

Từ khóa


Tài liệu tham khảo

Friedenstein, 1970, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet, 3, 393

Zuk, 2001, Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Eng, 7, 211, 10.1089/107632701300062859

Gronthos, 2000, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci USA, 97, 13625, 10.1073/pnas.240309797

Kogler, 2004, A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential, J Exp Med, 200, 123, 10.1084/jem.20040440

Berry, 2008, Regeneration of axons in the visual system, Restor Neurol Neurosci, 26, 147

Mead, 2015, Stem cell treatment of degenerative eye disease, Stem Cell Res, 14, 243, 10.1016/j.scr.2015.02.003

Mead, 2014, Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells, PLoS One, 9, e109305, 10.1371/journal.pone.0109305

Mead, 2014, Dental pulp stem cells, a paracrine-mediated therapy for the retina, Neural Regen Res, 9, 577, 10.4103/1673-5374.130089

Levkovitch-Verbin, 2010, Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection, Invest Ophthalmol Vis Sci, 51, 6394, 10.1167/iovs.09-4310

Mead, 2013, Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury, Invest Ophthalmol Vis Sci, 54, 7544, 10.1167/iovs.13-13045

Tan, 2015, The therapeutic effects of bone marrow mesenchymal stem cells after optic nerve damage in the adult rat, Clin Interv Aging, 10, 487

Zwart, 2009, Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model, Exp Neurol, 216, 439, 10.1016/j.expneurol.2008.12.028

Mead, 2016, Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma, Cytotherapy, 18, 487, 10.1016/j.jcyt.2015.12.002

Emre, 2015, Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model, Cytotherapy, 10.1016/j.jcyt.2014.12.005

Johnson, 2010, Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma, Invest Ophthalmol Vis Sci, 51, 2051, 10.1167/iovs.09-4509

Yu, 2006, Effects of bone marrow stromal cell injection in an experimental glaucoma model, Biochem Biophys Res Commun, 344, 1071, 10.1016/j.bbrc.2006.03.231

Johnson, 2014, Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome, Brain, 10.1093/brain/awt292

Zhao, 2016, Wnt3a, a Protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury, Stem Cells, 34, 1263, 10.1002/stem.2310

Johnson, 2010, Identification of barriers to retinal engraftment of transplanted stem cells, Invest Ophthalmol Vis Sci, 51, 960, 10.1167/iovs.09-3884

Pan, 1983, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor, Cell, 33, 967, 10.1016/0092-8674(83)90040-5

Thery, 2006, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr Protoc Cell Biol, 3

Kim, 2012, Proteomic analysis of microvesicles derived from human mesenchymal stem cells, J Proteome Res, 11, 839, 10.1021/pr200682z

Valadi, 2007, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, 9, 654, 10.1038/ncb1596

Kosaka, 2016, Versatile roles of extracellular vesicles in cancer, J Clin Invest, 126, 1163, 10.1172/JCI81130

Heusermann, 2016, Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER, J Cell Biol, 213, 173, 10.1083/jcb.201506084

Lai, 2010, Derivation and characterization of human fetal MSCs: An alternative cell source for large-scale production of cardioprotective microparticles, J Mol Cell Cardiol, 48, 1215, 10.1016/j.yjmcc.2009.12.021

Chen, 2010, Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs, Nucleic Acids Res, 38, 215, 10.1093/nar/gkp857

Timmers, 2007, Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, 1, 129, 10.1016/j.scr.2008.02.002

Lai, 2010, Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res, 4, 214, 10.1016/j.scr.2009.12.003

Arslan, 2013, Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury, Stem Cell Res, 10, 301, 10.1016/j.scr.2013.01.002

Katsuda, 2015, Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair, Stem Cell Res Ther, 6, 212, 10.1186/s13287-015-0214-y

Zhang, 2016, Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons, Mol Neurobiol, 10.1007/s12035-016-9851-0

Xin, 2013, Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats, J Cereb Blood Flow Metab, 33, 1711, 10.1038/jcbfm.2013.152

Zhang, 2015, Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury, J Neurosurg, 122, 856, 10.3171/2014.11.JNS14770

Nakano, 2016, Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes, Sci Rep, 6, 10.1038/srep24805

Sullivan, 1988, Structure and utilization of tubulin isotypes, Ann Rev of Cell Biolo, 4, 687, 10.1146/annurev.cb.04.110188.003351

Suggate, 2009, Optimisation of siRNA-mediated RhoA silencing in neuronal cultures, Mol Cell Neurosci, 40, 451, 10.1016/j.mcn.2009.01.004

Berry, 1996, Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve, J Neurocytol, 25, 147, 10.1007/BF02284793

Mead, 2014, Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts, PLoS One, 9, e110612, 10.1371/journal.pone.0110612

Faul, 2007, G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behav Res Methods, 39, 175, 10.3758/BF03193146

Ching, 2015, The role of exosomes in peripheral nerve regeneration, Neural Regen Res, 10, 743, 10.4103/1673-5374.156968

Sun, 2016, Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell, Cytotherapy, 18, 413, 10.1016/j.jcyt.2015.11.018

Sun, 2013, Exosomes are endogenous nanoparticles that can deliver biological information between cells, Adv Drug Deliv Rev, 65, 342, 10.1016/j.addr.2012.07.002

Sinha, 2016, Cortactin promotes exosome secretion by controlling branched actin dynamics, J Cell Biol, 214, 197, 10.1083/jcb.201601025

Chiu, 2016, A single-cell assay for time lapse studies of exosome secretion and cell behaviors, Small, 12, 3658, 10.1002/smll.201600725

Lorber, 2008, Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting, J Neurosci Res, 86, 894, 10.1002/jnr.21545

Douglas, 2009, Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth, Brain, 132, 3102, 10.1093/brain/awp240

Lopez-Verrilli, 2016, Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth, Neuroscience, 320, 129, 10.1016/j.neuroscience.2016.01.061

Berkelaar, 1994, Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats, J Neurosci, 14, 4368, 10.1523/JNEUROSCI.14-07-04368.1994

Mesentier-Louro, 2014, Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy, PLoS One, 9, e110722, 10.1371/journal.pone.0110722

Mead, 2016, Evaluating retinal ganglion cell loss and dysfunction, Exp Eye Res, 151, 96, 10.1016/j.exer.2016.08.006

Duan, 2015, Subtype-specific regeneration of retinal ganglion cells following axotomy: Effects of osteopontin and mTOR signaling, Neuron, 85, 1244, 10.1016/j.neuron.2015.02.017

Ha, 2014, Regulation of microRNA biogenesis, Nat Rev Mol Cell Biol, 15, 509, 10.1038/nrm3838

Guduric-Fuchs, 2012, Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types, BMC Genomics, 13, 357, 10.1186/1471-2164-13-357

Baglio, 2015, Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species, Stem Cell Res Ther, 6, 127, 10.1186/s13287-015-0116-z

Qian, 2016, Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit Hepatitis C virus infection, Stem Cells Transl Med, 10.5966/sctm.2015-0348

Eirin, 2014, MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells, Gene, 551, 55, 10.1016/j.gene.2014.08.041

Park, 2008, Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway, Science, 322, 963, 10.1126/science.1161566

Berry, 2016, Prospects for mTOR-mediated functional repair after central nervous system trauma, Neurobiol Dis, 85, 99, 10.1016/j.nbd.2015.10.002

Meng, 2007, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 133, 647, 10.1053/j.gastro.2007.05.022

Katakowski, 2013, Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth, Cancer Lett, 335, 201, 10.1016/j.canlet.2013.02.019

Koprivica, 2005, EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans, Science, 310, 106, 10.1126/science.1115462

Gu, 2016, Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway, Mol Med Rep, 10.3892/mmr.2016.5625