Exosome từ tế bào gốc trung mô lấy từ tủy xương thúc đẩy sự sống sót của tế bào thần kinh hạch võng mạc thông qua cơ chế phụ thuộc vào miRNA
Tóm tắt
Mất tế bào thần kinh hạch võng mạc (RGC) và các sợi trục của chúng là một trong những nguyên nhân hàng đầu gây mù lòa, bao gồm các bệnh về mắt chấn thương (bệnh thần kinh thị giác) và thoái hóa (cườm nước). Mặc dù không có liệu pháp lâm sàng nào được sử dụng, tế bào gốc trung mô (MSC) đã chứng tỏ có tác dụng bảo vệ thần kinh và thúc đẩy sự hình thành sợi thần kinh đáng kể đối với RGC trong cả hai mô hình nêu trên. Bằng chứng gần đây cho thấy MSC tiết ra exosome, các túi màng bao gồm (30–100 nm) chứa protein, mRNA và miRNA có thể được chuyển đến các tế bào lân cận. Nghiên cứu hiện tại nhằm mục đích phân lập exosome từ MSC lấy từ tủy xương (BMSC) và thử nghiệm chúng trong mô hình nghiền dây thần kinh thị giác ở chuột (ONC). Việc điều trị các mô hình văn hóa võng mạc chính bằng exosome BMSC cho thấy tác dụng bảo vệ thần kinh và thúc đẩy hình thành sợi thần kinh đáng kể. Hai mươi mốt ngày sau ONC và tiêm thuốc vào thủy tinh thể hàng tuần; chụp ánh sáng đồng bộ quang học, điện sinh lý võng mạc và hóa miễn dịch đã được thực hiện. Exosome nguồn gốc từ BMSC đã thúc đẩy sự sống sót đáng kể của RGC và sự tái sinh các sợi trục của chúng trong khi một phần ngăn chặn mất mát sợi trục RGC và rối loạn chức năng RGC. Exosome đã thành công trong việc chuyển tải hàng hóa của chúng vào các lớp trong của võng mạc và các hiệu ứng phụ thuộc vào miRNA, được chứng minh bằng việc giảm hiệu ứng điều trị của các exosome lấy từ BMSC sau khi gạt bỏ Argonaute-2, một phân tử tác động miRNA quan trọng. Nghiên cứu này ủng hộ việc sử dụng exosome lấy từ BMSC như một liệu pháp không dựa trên tế bào cho căn bệnh mắt chấn thương và thoái hóa.
Từ khóa
Tài liệu tham khảo
Friedenstein, 1970, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet, 3, 393
Zuk, 2001, Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Eng, 7, 211, 10.1089/107632701300062859
Gronthos, 2000, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci USA, 97, 13625, 10.1073/pnas.240309797
Kogler, 2004, A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential, J Exp Med, 200, 123, 10.1084/jem.20040440
Berry, 2008, Regeneration of axons in the visual system, Restor Neurol Neurosci, 26, 147
Mead, 2015, Stem cell treatment of degenerative eye disease, Stem Cell Res, 14, 243, 10.1016/j.scr.2015.02.003
Mead, 2014, Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells, PLoS One, 9, e109305, 10.1371/journal.pone.0109305
Mead, 2014, Dental pulp stem cells, a paracrine-mediated therapy for the retina, Neural Regen Res, 9, 577, 10.4103/1673-5374.130089
Levkovitch-Verbin, 2010, Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection, Invest Ophthalmol Vis Sci, 51, 6394, 10.1167/iovs.09-4310
Mead, 2013, Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury, Invest Ophthalmol Vis Sci, 54, 7544, 10.1167/iovs.13-13045
Tan, 2015, The therapeutic effects of bone marrow mesenchymal stem cells after optic nerve damage in the adult rat, Clin Interv Aging, 10, 487
Zwart, 2009, Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model, Exp Neurol, 216, 439, 10.1016/j.expneurol.2008.12.028
Mead, 2016, Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma, Cytotherapy, 18, 487, 10.1016/j.jcyt.2015.12.002
Emre, 2015, Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model, Cytotherapy, 10.1016/j.jcyt.2014.12.005
Johnson, 2010, Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma, Invest Ophthalmol Vis Sci, 51, 2051, 10.1167/iovs.09-4509
Yu, 2006, Effects of bone marrow stromal cell injection in an experimental glaucoma model, Biochem Biophys Res Commun, 344, 1071, 10.1016/j.bbrc.2006.03.231
Johnson, 2014, Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome, Brain, 10.1093/brain/awt292
Zhao, 2016, Wnt3a, a Protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury, Stem Cells, 34, 1263, 10.1002/stem.2310
Johnson, 2010, Identification of barriers to retinal engraftment of transplanted stem cells, Invest Ophthalmol Vis Sci, 51, 960, 10.1167/iovs.09-3884
Pan, 1983, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor, Cell, 33, 967, 10.1016/0092-8674(83)90040-5
Thery, 2006, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr Protoc Cell Biol, 3
Kim, 2012, Proteomic analysis of microvesicles derived from human mesenchymal stem cells, J Proteome Res, 11, 839, 10.1021/pr200682z
Valadi, 2007, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, 9, 654, 10.1038/ncb1596
Kosaka, 2016, Versatile roles of extracellular vesicles in cancer, J Clin Invest, 126, 1163, 10.1172/JCI81130
Heusermann, 2016, Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER, J Cell Biol, 213, 173, 10.1083/jcb.201506084
Lai, 2010, Derivation and characterization of human fetal MSCs: An alternative cell source for large-scale production of cardioprotective microparticles, J Mol Cell Cardiol, 48, 1215, 10.1016/j.yjmcc.2009.12.021
Chen, 2010, Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs, Nucleic Acids Res, 38, 215, 10.1093/nar/gkp857
Timmers, 2007, Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, 1, 129, 10.1016/j.scr.2008.02.002
Lai, 2010, Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res, 4, 214, 10.1016/j.scr.2009.12.003
Arslan, 2013, Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury, Stem Cell Res, 10, 301, 10.1016/j.scr.2013.01.002
Katsuda, 2015, Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair, Stem Cell Res Ther, 6, 212, 10.1186/s13287-015-0214-y
Zhang, 2016, Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons, Mol Neurobiol, 10.1007/s12035-016-9851-0
Xin, 2013, Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats, J Cereb Blood Flow Metab, 33, 1711, 10.1038/jcbfm.2013.152
Zhang, 2015, Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury, J Neurosurg, 122, 856, 10.3171/2014.11.JNS14770
Nakano, 2016, Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes, Sci Rep, 6, 10.1038/srep24805
Sullivan, 1988, Structure and utilization of tubulin isotypes, Ann Rev of Cell Biolo, 4, 687, 10.1146/annurev.cb.04.110188.003351
Suggate, 2009, Optimisation of siRNA-mediated RhoA silencing in neuronal cultures, Mol Cell Neurosci, 40, 451, 10.1016/j.mcn.2009.01.004
Berry, 1996, Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve, J Neurocytol, 25, 147, 10.1007/BF02284793
Mead, 2014, Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts, PLoS One, 9, e110612, 10.1371/journal.pone.0110612
Faul, 2007, G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behav Res Methods, 39, 175, 10.3758/BF03193146
Ching, 2015, The role of exosomes in peripheral nerve regeneration, Neural Regen Res, 10, 743, 10.4103/1673-5374.156968
Sun, 2016, Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell, Cytotherapy, 18, 413, 10.1016/j.jcyt.2015.11.018
Sun, 2013, Exosomes are endogenous nanoparticles that can deliver biological information between cells, Adv Drug Deliv Rev, 65, 342, 10.1016/j.addr.2012.07.002
Sinha, 2016, Cortactin promotes exosome secretion by controlling branched actin dynamics, J Cell Biol, 214, 197, 10.1083/jcb.201601025
Chiu, 2016, A single-cell assay for time lapse studies of exosome secretion and cell behaviors, Small, 12, 3658, 10.1002/smll.201600725
Lorber, 2008, Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting, J Neurosci Res, 86, 894, 10.1002/jnr.21545
Douglas, 2009, Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth, Brain, 132, 3102, 10.1093/brain/awp240
Lopez-Verrilli, 2016, Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth, Neuroscience, 320, 129, 10.1016/j.neuroscience.2016.01.061
Berkelaar, 1994, Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats, J Neurosci, 14, 4368, 10.1523/JNEUROSCI.14-07-04368.1994
Mesentier-Louro, 2014, Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy, PLoS One, 9, e110722, 10.1371/journal.pone.0110722
Mead, 2016, Evaluating retinal ganglion cell loss and dysfunction, Exp Eye Res, 151, 96, 10.1016/j.exer.2016.08.006
Duan, 2015, Subtype-specific regeneration of retinal ganglion cells following axotomy: Effects of osteopontin and mTOR signaling, Neuron, 85, 1244, 10.1016/j.neuron.2015.02.017
Guduric-Fuchs, 2012, Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types, BMC Genomics, 13, 357, 10.1186/1471-2164-13-357
Baglio, 2015, Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species, Stem Cell Res Ther, 6, 127, 10.1186/s13287-015-0116-z
Qian, 2016, Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit Hepatitis C virus infection, Stem Cells Transl Med, 10.5966/sctm.2015-0348
Eirin, 2014, MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells, Gene, 551, 55, 10.1016/j.gene.2014.08.041
Park, 2008, Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway, Science, 322, 963, 10.1126/science.1161566
Berry, 2016, Prospects for mTOR-mediated functional repair after central nervous system trauma, Neurobiol Dis, 85, 99, 10.1016/j.nbd.2015.10.002
Meng, 2007, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 133, 647, 10.1053/j.gastro.2007.05.022
Katakowski, 2013, Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth, Cancer Lett, 335, 201, 10.1016/j.canlet.2013.02.019
Koprivica, 2005, EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans, Science, 310, 106, 10.1126/science.1115462