Bond strength and marginal adaptation of a novel root-end filling material

Bulletin of the National Research Centre - Tập 44 - Trang 1-7 - 2020
Yousra Aly1, Sherif El Shershaby1, Sammar El-Sherif1
1Restorative and Dental Materials Department, National Research Centre, Cairo, Egypt

Tóm tắt

Apicoectomy with retrograde filling is considered as a tooth saver. Mineral trioxide aggregate (MTA) is mostly recommended as a root-end filling material as it is proved to have excellent sealing ability and hard tissue repair. Aside from these advantages, MTA has some disadvantages, such as weak handling properties, long setting time, and discoloration potential. Nanotechnology is now undergoing rapid development. Recently, experimental nano-white mineral trioxide aggregate (nano-WMTA) was prepared and introduced by NanoTech Egypt (Al Giza, Egypt) as a root-end filling material. The manufacturers claim that it has similar composition to white MTA, but with the reduction of its particle size to obtain a high specific powder surface area that may lead to a better and faster hydration process. It seems worthy to study the bond strength and marginal adaptation of the newly introduced nano root-end filling materials and compare it with the conventionally used MTA in root-end cavities. In push-out test, no statistically significant difference was found between nano-WMTA and MTA Angelus groups where p = 0.459. The nano-WMTA group recorded the highest mean value. For scanning electron microscope evaluation, there was a statistically significant difference between the nano-WMTA and MTA Angelus groups where p < 0.001. The MTA Angelus group recorded the highest mean value of gap distance. Nano-WMTA recorded a similar bond strength to MTA Angelus. The nano-WMTA showed significantly higher marginal adaptation to root-end cavity than MTA Angelus.

Tài liệu tham khảo

Aggarwal V, Singla M, Miglani S, Kohli S (2013) Comparative evaluation of push-out bond strength of proRoot MTA, biodentine, and MTA plus in furcation perforation repair. J Conserv Dent 16:462–465 Asgary S, Eghbal MJ, Parirokh M (2008) Sealing ability of a novel endodontic cement as a root-end filling material. J Biomed Mater Res A. 87:706–709 Bozeman TB, Lemon RR, Eleazer PD (2006) Elemental analysis of crystal precipitate from gray and white MTA. J Endod 32:425–428 Camilleri J (2007) Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462–470 Camilleri J, Formosa L, Damidot D (2013) The setting characteristics of MTA plus in different environmental conditions. Int Endod J 46:831–840 De lange J, Patters T, Baas EM, Ingen JM (2007) Ultrasonic root-end preparation in apical surgery: a prospective and randomized study. Oral Surg Oral Med Oral Pathol Oral RadiolEEndod 104:841–854 Estrela C, Bammann LL, Estrela C, Silva RS, Pécora JD (2000) Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J. 11:3–9 Gutmann and Harrison, Gutmann’s surgical endodontics, 1999. Han L, Kodama S, Okiji T (2015) Evaluation of calcium-releasing and apatite-forming abilities of fast-setting calcium silicate-based endodontic materials. Int Endod J 48:124–130 Hong ST, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W et al (2010) Effects of root canal irrigants on the push-out strength and hydration behavior of accelerated mineral trioxide aggregate in its early setting phase. J Endod 36:1995–1999 Iqbal Z, Qureshi AH (2014) MTA monoblock obturation technique in endodontic retreatment. J Coll Physicians Surg Pak 24(Suppl 3):S180–S182 Lee SJ, Monsef M, Torabinejad M (1993) Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 19(11):541–544 Malhotra S, Hegde MN (2015) Analysis of marginal seal of ProRoot MTA, MTA Angelus biodentine, and glass ionomer cement as root-end filling materials: an in vitro study. J Oral Res Rev 7:44–49 Morgan LA, Marshall JG (1999) A scanning electron microscopic study of in vivo ultrasonic root-end preparations. Journal of Endodontics 25:567–570 Nagas E, Cehreli ZC, Durmaz V, Vallittu PK, Lassila LV (2007) Regional push-out bond strength and coronal microleakage of Resilon after different light-curing methods. J Endod. 33(12):1464–1468 Nikhade P, Kela S, Chandak M, Chandwani N (2016) Comparative evaluation of push-out bond strength of calcium silicate-based materials: an ex-vivo study. IOSR-JDMS 1:65–68 Oliveira HF, Gonçalves Alencar AH, José Figueiredo AP, Guedes OA, de Almeida DD, Estrela C (2013) Marginal adaptation evaluation of root-end filling materials using scanning electron microscopy. Iran Endod J. 8(4):183–187 Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod. 36:400–413 Peters CI, Peters OA (2002a) Occlusal loading of EBA and MTA root end fillings in a computer-controlled masticator: a scanning electron microscopic study. Int. Endod. J. 35:22–29 Peters CI, Peters OA (2002b) Occlusal loading of EBA and MTA root- fillings in a computer-controlled masticator: a scanning electron microscopic study. Int Endod J. 35(1):22–29 Plotino G, Pameijer CH, Grande NM, Soma F (2007) Ultrasonics in endodontics: a review of the literature. J Endod 33:81–95 Radeva E, Uzunov T, Kosturkov D (2014) Microleakge associated with retrograde filling after root end resection (in vitro study). Journal of IMAB — Annual Proceeding (Scientific Papers) 20:578–583 Rainwater A, Jeansonne BG, Sarker N (2000) Effect of root-end preparation on microcrack formation and leakage. J Endod 26:72–53 Saghiri MA, Asatourian A, Orangi J, Lotfi M, Soukup JW, Garcia-Godoy F et al (2015) Effect of particle size on calcium release and elevation of pH of endodontic cements. Dent Traumatol. 31:196–201 Saghiri MA, Asgar K, Lotfi M, Garcia-Godoy F (2012) Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties. Int Endod J. 45:979–988 Saghiri MA, Garcia-Godoy F, Asatourian A, Lotfi M, Banava S, Khezri-Boukani K (2013a) Effect of pH on compressive strength of some modification of mineral trioxide aggregate. Med Oral Patol Oral Cir Bucal. 18:e714–e720 Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H et al (2013b) Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumatol 29:323–327 Saunders WP (2008) A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endodontol 34(6):660–664 Shahi S, Rahimi S, Yavari HR, Samiei M, Janani M, Bahari M et al (2012) Effects of various mixing techniques on push-out bond strengths of white mineral trioxide aggregate. J Endod 38:501–504 Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM (2010) Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod 36:871–874 Stabholz A, Friedman S, Abed J (1985) Marginal adaptation of retrograde fillings and its correlation with sealability. J. Endod. 11:218–223 Tay FR, Pashley DH (2007) Monoblocks in root canals: a hypothetical or a tangible goal. J Endod 33:391–398 Voicu G, BaDaNoiu AI, Ghit Ulica CD et al (2012) Sol-gel synthesis of white mineral trioxide aggregate with potential use as biocement. Digest J Nanomater Biostruct 7:1639–1646 Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 28:3338–3348 Xie KY, Wang Y, Zhao Y, Chang L, Wang G, Chen Z et al (2013) Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater Sci Eng C. 33:3530–3536