Bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation

Journal of Materials Research - Tập 14 - Trang 2029-2035 - 2011
U. C. Oh1,2, De Gang Cheng1, Fan Xiu Lu1, Jung Ho Je2
1Department of Materials Science and Engineering, University of Science and Technology Beijing, Haidain Qu, Beijing, People’s Republic of China
2Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea

Tóm tắt

The bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation density (Nd) were studied. Amorphous carbon (a-C) interlayer was deposited by magnetron sputtering. Interestingly, the intensity ratio (ID/IG) of the D band (∼1400 cm−1) to the G band (∼1570 cm−1) in the Raman spectra and the optical band gap of the a-C film were found to be inversely proportional to the sputtering power, that is, to bombarding energy. When diamond was subsequently deposited at 800 °C by microwave plasma chemical vapor deposition (CVD), diamond could be grown only on the interlayers with higher ID/IG (≥2.20), and Nd was increased up to 2 × 106/cm2 with the increase of ID/IG ratio, that is, with the decrease of the bombarding energy. We experimentally confirmed that the amount of the sp3 bonded carbon clusters within the interlayer was dependent on the bombarding energy of the particles, determining the diamond nucleation density. We suggest that the transformation of the amorphous carbon into graphitic carbon should be effectively prevented for the diamond nucleation on the a-C interlayer.

Tài liệu tham khảo

W.A. Yarbrough and R. Messier, Science 247, 688 (1990). B.R. Stoner, G-H.M. Ma, S.D. Wolter, and J.T. Glass, Phys. Rev. B 45, 11067 (1992). N. Setaka and Hyomen, Surface 22, 110 (1984). L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, A. A. Smolin, K.G. Korotushenko, and E. D. Obraztsova, J. Mater. Res. 12, 2533 (1997). S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett. 57, 2646 (1990). Y. Mitsuda, Y. Kojima, T. Yoshida, and K. Akashi, J. Mater. Sci. 22, 1557 (1987). P.K. Bachmann, W. Drawl, D. Knight, R. Weimer, and R. F. Messier, in Diamond and Diamond Like Materials Synthesis: Extended Abstracts, edited by G. H. Johnson, A. R. Badzian, and M. W. Geis (Mater. Res. Soc., Pittsburgh, PA, 1988), p. 99. H. Maeda, S. Masuda, K. Kusakabe, and S. Morooka, J. Cryst. Growth 121, 507 (1992). S. Yugo, T. Kanai, T. Kimura, and T. Muto, Appl. Phys. Lett. 58, 1036 (1991). B.W. Sheldon, R. Csencsits, J. Rankin, R. E. Boekenhauer, and Y. Shigesato, J. Appl. Phys. 75, 5001 (1994). K.V. Ravi, C.A. Koch, H. S. Hu, and A. Joshi, J. Mater. Res. 5, 2356 (1990). T. Hartnett, R. Miller, D. Montanari, C. Willingham, and R. Tustison, J. Vac. Sci. Technol. A 8, 2129 (1990). V.P. Godbole and J. Narayan, J. Mater. Res. 7, 2785 (1992). L.C. Nistor, J.V. Landuyt, V. G. Ralchenko, T. V. Kononenko, E. D. Obarztsova, and V. E. Strelnitsky, Appl. Phys. A58, 137 (1994). J. J. Dubray, C. G. Pantano, M. Meloncelli, and E. Bertran, J. Vac. Sci. Technol A 9, 3012 (1991). A.A. Morrishi and P.E. Pehrsson, Appl. Phys. Lett. 59, 417 (1991). Z. Feng, K. Komvopoulos, I.G. Brown, and D.B. Bogy, J. Mater. Res. 9, 2148 (1994). Z. Feng, M. A. Brewer, K. Komvopoulos, I. G. Brown, and D.B. Bogy, J. Mater. Res. 10, 165 (1995). Z. Feng, M. A. Brewer, D. B. Bogy, J. W. Ager III, S. Anders, Z. Wang, and I.G. Brown, J. Appl. Phys. 79, 485 (1996). T.P. Ong, F. Xiong, R. P. H. Chang, and C.W. White, J. Mater. Res. 7, 2429 (1992). Z. Feng, K. Komvopoulos, I. G. Brown, and D. B. Bogy, J. Appl. Phys. 74, 2841 (1993). R.J. Meilunas, R.P. H. Chang, S. Liu, and M. M. Kappes, Appl. Phys. Lett. 59, 3461 (1991). Y.H. Shing, F. S. Pool, and D. H. Rich, Thin Solid Films 212, 150 (1992). J. E. Yehoda, R. I. Fuentes, J. C. Tsang, S. J. Whitehair, C. R. Guarnieri, and J. J. Cuomo, Appl. Phys. Lett. 60, 2865 (1992). Y. Shimada, N. Mutsukura, and Y. Machi, Jpn. J. Appl. Phys. 31, 1958 (1992). V. P. Godbole and J. Narayan, J. Appl. Phys. 71, 4944 (1992). J. Singh and M. Vellaikal, Surf. Coat. Technol. 64, 131 (1994). A. R. Kirkpatrick, B.W. Ward, and N.P. Economou, J. Vac. Sci. Technol. B 7, 1947 (1989). S.J. Lin, S. L. Lee, J. Hwang, C.S. Chang, and H. Y. Wen, Appl. Phys. Lett. 60, 1559 (1992). J. J. Dubray, W.A. Yarbrough, and C.G. Pantano, in Proceedings of the NATO-ASI on Diamond and Diamondlike Films and Coatings, edited by B. Clausing, J. Angus, P. Koidal, and L. Horton (Plenum, New York, 1991). K. Tamaki, Y. Watanabe, Y. Nakamura, and S. Hirayama, Thin Solid Films 236, 115 (1993). K. J. Grannen and R. P. H. Chang, J. Mater. Res. 9, 2154 (1994). Z-M. Yu, T. Rogelet, and S. A. Flodströöm, J. Appl. Phys. 74, 7235 (1993). A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, J. Appl. Phys. 54, 4590 (1983). I. Koponen, M. Hakovirta, and R. Lappalainen, J. Appl. Phys. 78, 5837 (1995). W.S. Yang, T. S. Kim, and J. H. Je, J. Mater. Res. 13, 596 (1998). S. P. McGinnis, M. A. Kelly, S. B. Hagstom, and R. L. Alvis, J. Appl. Phys. 79, 170 (1996). M. A. Tamor and W.C. Vassell, J. Appl. Phys. 76, 3823 (1994). D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989). J. Wagner, M. Ramsteiner, Ch. Wild, and P. Koidl, Phys. Rev. B 40, 1817 (1989). M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. Akamatsu, in Science and Technology of New Diamond, edited by S. Saito, O. Fukunaga, and M. Toshikawa (Terra Scientific Publishing Company, Tokyo, 1990), p. 445. P. K. Lim, F. Gaspari, and S. Zukotynski, J. Appl. Phys. 78, 5307 (1995). V. Palshin, E. I. Meletis, S. Ves, and S. Logothetidis, Thin Solid Films 270, 165 (1995). N. Wada, P. J. Gaczi, and S. A. Solin, J. Non-Cryst. Solids 35 & 36, 543 (1980). J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987). J. Robertson, Surf. Coat. Technol. 50, 185 (1992). J. Seth, R. Padiyath, and S. V. Babu, Diamond and Related Materials 3, 210 (1994). Y. Lion, A. Inspector, R. Reimer, D. Knight, and R. Messier, J. Mater. Res. 5, 2305 (1990). H. Tsai and D. B. Bogy, J. Vac. Sci. Technol. A5, 3287 (1987).