Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool
Tóm tắt
Từ khóa
Tài liệu tham khảo
S.H. Chang, W.P. Baek, Understanding, predicting, and enhancing critical heat flux, in: The 10th International Topical Meeting on Nuclear Reactor Thermal Hydrualics (NURETH-10), Seoul, Korea, October (5–9) (2003)
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, 121, 280, 10.1115/1.2825978
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, 46, 851, 10.1016/S0017-9310(02)00348-4
Vassallo, 2004, Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transfer, 47, 407, 10.1016/S0017-9310(03)00361-2
Xuan, 2000, Conceptions for heat correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Brinkman, 1952, The Viscosity of concentrated suspen-sions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Rhosenow, 1952, A Method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74, 969
ElGenk, 1993, Transient boiling from inclined and downward facing surfaces in a saturated pool, Int. J. Refrig., 6, 414, 10.1016/0140-7007(93)90058-G
ANSI/ASME PTC 19.1, ASME Performance Test Codes: Supplement on Instruments and Apparatus, Part 1: Measurement Uncertainty, 1985
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, Trans. ASME, 125, 567, 10.1115/1.1571080