Bohmian quantum potential and chaos
Tài liệu tham khảo
Bohm, 1952, A suggested interpretation of the quantum theory in terms of ”hidden” variables. I, Phys. Rev., 85, 166, 10.1103/PhysRev.85.166
Bohm, 1952, A suggested interpretation of the quantum theory in terms of ”hidden” variables. Ii, Phys. Rev., 85, 180, 10.1103/PhysRev.85.180
Bohm, 1977
Philippidis, 1979, Quantum interference and the quantum potential, Il Nuovo Cimento B (1971-1996), 52, 15, 10.1007/BF02743566
Dewdney, 1982, A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells, Found Phys, 12, 27, 10.1007/BF00726873
Bohm, 1984, Measurement understood through the quantum potential approach, Found Phys, 14, 255, 10.1007/BF00730211
Holland, 1995
Bohm, 2006
Sanz, 2008, A trajectory-based understanding of quantum interference, J Phys A, 41, 10.1088/1751-8113/41/43/435303
Sanz, 2019, Bohm’s approach to quantum mechanics: alternative theory or practical picture?, Front Phys, 14, 1, 10.1007/s11467-018-0853-4
Hiley, 1999, Active information and teleportation, 113
Hiley, 2002, From the Heisenberg picture to Bohm: a new perspective on active information and its relation to Shannon information, Citeseer, 141
Lopreore, 1999, Quantum wave packet dynamics with trajectories, Phys Rev Lett, 82, 5190, 10.1103/PhysRevLett.82.5190
Kohout, 2002, On the relationship between the one-electron and Bohm’s quantum potential, Int J Quant Chem, 87, 12, 10.1002/qua.10050
Riggs, 2008, Reflections on the de Broglie-Bohm quantum potential, Erkenntnis, 68, 21, 10.1007/s10670-007-9054-1
Goldstein, 2014, On quantum potential dynamics, J Phys A, 48, 10.1088/1751-8113/48/2/025303
Licata, 2014
Dennis, 2015, Bohm’s quantum potential as an internal energy, Phys Lett A, 379, 1224, 10.1016/j.physleta.2015.02.038
Fiscaletti, 2018
Hojman, 2021, Bohm potential is real and its effects are measurable, Optik, 232, 10.1016/j.ijleo.2021.166341
Iacomelli, 1996, Regular and chaotic quantum motions, Phys. Lett. A, 212, 29, 10.1016/0375-9601(96)00027-8
Frisk, 1997, Properties of the trajectories in Bohmian mechanics, Phys Lett A, 227, 139, 10.1016/S0375-9601(97)00044-3
Falsaperla, 2003, On the motion of a single particle near a nodal line in the de Broglie-Bohm interpretation of quantum mechanics, Phys Lett A, 316, 382, 10.1016/j.physleta.2003.08.010
Wisniacki, 2005, Motion of vortices implies chaos in Bohmian mechanics, Europhys Lett, 71, 159, 10.1209/epl/i2005-10085-3
Efthymiopoulos, 2006, Chaos in Bohmian quantum mechanics, J Phys A, 39, 1819, 10.1088/0305-4470/39/8/004
Wisniacki, 2007, Vortex dynamics and their interactions in quantum trajectories, J Phys A, 40, 14353, 10.1088/1751-8113/40/48/003
Valentini, 1991, Signal-locality, uncertainty, and the subquantum h-theorem. I, Phys Lett A, 156, 5, 10.1016/0375-9601(91)90116-P
Valentini, 1991, Signal-locality, uncertainty, and the subquantum h-theorem. Ii, Phys Lett A, 158, 1, 10.1016/0375-9601(91)90330-B
Valentini, 2005, Dynamical origin of quantum probabilities, Proc R Soc A, 461, 253, 10.1098/rspa.2004.1394
Efthymiopoulos, 2017, Chaos in de Broglie - Bohm quantum mechanics and the dynamics of quantum relaxation, Ann Fond de Broglie, 42, 133
Tzemos, 2021, The role of chaotic and ordered trajectories in establishing Born’s rule, Phys Scr, 96, 10.1088/1402-4896/abf18a
Efthymiopoulos, 2007, Nodal points and the transition from ordered to chaotic Bohmian trajectories, JPhys A, 40, 12945
Efthymiopoulos, 2009, Origin of chaos near critical points of quantum flow, Phys Rev E, 79, 10.1103/PhysRevE.79.036203
Contopoulos, 2008, Order and chaos in quantum mechanics, Nonlinear Phenom Complex Systems, 11, 107
Contopoulos, 2002
Tzemos, 2019, Bohmian trajectories in an entangled two-qubit system, Phys Scr, 94, 10.1088/1402-4896/ab2445
Tzemos, 2020, Chaos and ergodicity in an entangled two-qubit Bohmian system, Phys Scr, 95, 10.1088/1402-4896/ab606f