Blue‐Pumped Deep Ultraviolet Lasing from Lanthanide‐Doped Lu6O5F8 Upconversion Nanocrystals

Advanced Optical Materials - Tập 8 Số 2 - 2020
Yangyang Du1,2, Yunfeng Wang3, Zhiqin Deng1,4, Xian Chen2, Xueqing Yang1,2, Tianying Sun1,2, Xin Zhang1,2, Guangyu Zhu1,4, S. F. Yu3, Feng Wang1,2
1City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
2Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
3Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
4Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China

Tóm tắt

AbstractDeep ultraviolet (UV) lasers are essential for enormous use ranging from medical and life science to environmental and industrial applications. Herein, a class of blue‐pumped microcavity lasers operating in the deep UV region is demonstrated by using Lu6O5F8:Pr/Gd@Lu6O5F8 upconversion nanocrystals as the gain medium. A hot‐injection synthesis is developed for tuning dimensions of the Lu6O5F8 nanocrystals. By synthesizing large‐sized nanocrystals and using inert shell coating, deep ultraviolet emission at 315 nm by blue excitation at 447 nm is realized for the first time in colloidal solutions. Mechanistic investigations suggest that the upconversion stems from sequential absorption of two blue photons by Pr3+ ions followed by energy transfer to Gd3+ emitters. By virtue of their small particle size and high dispersibility, the upconversion nanocrystals are readily incorporated into silica resin microcavities with a bottle‐like geometry. Lasing emissions of tunable optical characteristics are achieved from the microcavities through the formation of whispering gallery modes. These findings pave the way for constructing compact lasers operating in the deep UV regime by pumping with sophisticated long‐wavelength lasers.

Từ khóa


Tài liệu tham khảo

10.1038/nphoton.2008.135

10.1038/lsa.2017.170

10.1038/369631a0

10.1038/386351a0

10.1533/9780857097545.2.222

10.1063/1.5010265

Sun Y., 2016, Nat. Photonics, 10, 593

10.1038/s41598-017-11757-1

10.1063/1.1585135

10.1143/JJAP.42.L1318

10.1143/JJAP.43.L499

10.1021/acs.nanolett.6b05002

10.1021/acs.nanolett.5b02133

10.1063/1.4927602

10.1063/1.4967180

10.1063/1.4897527

10.1063/1.3050539

Zhao S., 2018, IEEE J. Quantum Electron., 54, 2001009

10.1038/373322a0

10.1007/s00340-009-3554-4

10.1021/ja204179g

10.1364/JOSAB.17.000764

10.1002/anie.201209151

10.3952/lithjphys.51407

10.1002/adma.200901174

10.1002/adma.200400772

10.1021/jp073920d

10.1038/nnano.2014.317

10.1080/00387010.2010.487018

10.1038/nmat3149

10.1021/ja8000387

10.1021/nn405387t

10.1002/smll.201701479

10.1038/ncomms10304

10.1021/acsnano.6b07322

10.1021/acsphotonics.7b00301

10.1021/acsnano.8b00741

10.1021/acsnano.6b03288

10.1364/OE.24.013999

10.1021/acsnano.8b03035

10.1038/s41467-019-09850-2

10.1039/c0nr00253d

10.1039/C8CC07592A

10.1021/jp508901d

10.1021/jp510209x

10.1039/C7CP06494B

10.1039/C6RA01121G

10.1021/es200196c

Cates S. L., 2014, Environ. Sci. Technol., 48, 2290

10.1140/epjd/e2006-00102-7

10.1016/j.chemphys.2006.01.037

10.1016/j.jlumin.2014.11.049

10.1002/lapl.200910143

10.1039/c2nr33577h

10.1039/c2jm31317k

10.1063/1.430264

10.1063/1.445485

10.1103/PhysRevB.34.126

10.1039/C5SC04599A

10.1002/chem.200601072

10.1021/ja9080088

10.1021/jp076717r

10.1002/anie.201003959

10.1021/acs.nanolett.6b03683

10.1002/cphc.201500724

10.1103/PhysRevLett.103.053901