Blowing Up Solutions for Nonlinear Parabolic Systems with Unequal Elliptic Operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andreucci, D., Herrero, M.A., Velázquez, J.J.L.: Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 1–53 (1997)
Caristi, G., Mitidieri, E.: Blow-up estimates of positive solutions of a parabolic system. J. Differ. Equ. 113, 265–271 (1994)
Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differ. Equ. 78, 160–190 (1989)
Chlebík, M., Fila, M.: From critical exponents to blow-up rates for parabolic problems. Rend. Mater. Appl. 19, 449–470 (1999)
Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains. Nonlinear Differ. Equ. Appl. 8, 473–480 (2001)
Filippas, S., Merle, F.: Modulation theory for the blowup of vector-valued nonlinear heat equations. J. Differ. Equ. 116, 119–148 (1995)
Friedman, A., Giga, Y.: A single point blow-up for solutions of semilinear parabolic systems. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 65–79 (1987)
Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–447 (1985)
Fujishima, Y.: Location of the blow-up set for a superlinear heat equation with small diffusion. Differ. Integr. Equ. 25, 759–786 (2012)
Fujishima, Y.: Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete Contin. Dyn. Syst. 34, 4617–4645 (2014)
Fujishima, Y.: On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Comm. Pure Appl. Anal. 17, 449–475 (2018)
Fujishima, Y., Ishige, K.: Blow-up set for a semilinear heat equation with small diffusion. J. Differ. Equ. 249, 1056–1077 (2010)
Fujishima, Y., Ishige, K.: Blow-up for a semilinear parabolic equation with large diffusion on $${ R}^N$$. J. Differ. Equ. 250, 2508–2543 (2011)
Fujishima, Y., Ishige, K.: Blow-up for a semilinear parabolic equation with large diffusion on $${\bf R}^N$$. II. J. Differ. Equ. 252, 1835–1861 (2012)
Fujishima, Y., Ishige, K.: Blow-up set for a semilinear heat equation and pointedness of the initial data. Indiana Univ. Math. J. 61, 627–663 (2012)
Fujishima, Y., Ishige, K.: Blow-up set for type I blowing up solutions for a semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 231–247 (2014)
Fujishima, Y., Ishige, K., Maekawa, H.: Blow-up set of type I blowing up solutions for nonlinear parabolic systems. Math. Ann. 369, 1491–1525 (2017)
Giga, Y., Kohn, R.V.: Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math. 42, 845–884 (1989)
Ghoul, T., Nguyen, V.T., Zaag, H.: Refined regularity of the blow-up set linked to refined asymptotic behavior for the semilinear heat equation. Adv. Nonlinear Stud. 17, 31–54 (2017)
Ghoul, T., Nguyen, V.T., Zaag, H.: Construction and stability of blowup solutions for a non-variational semilinear parabolic system. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1577–1630 (2018)
Ishige, K.: Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion. Adv. Differ. Equ. 7, 1003–1024 (2002)
Ishige, K., Kawakami, T., Sierżȩga, M.: Supersolutions of parabolic systems with power nonlinearities. J. Differ. Equ. 260, 6084–6107 (2016)
Ishige, K., Mizoguchi, N.: Blow-up behavior for semilinear heat equations with boundary conditions. Differ. Integr. Equ. 16, 663–690 (2003)
Ishige, K., Yagisita, H.: Blow-up problems for a semilinear heat equation with large diffusion. J. Differ. Equ. 212, 114–128 (2005)
Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society Translations, vol. 23. American Mathematical Society, Providence (1968)
Mahmoudi, N., Souplet, P., Tayachi, S.: Improved conditions for single-point blow-up in reaction–diffusion systems. J. Differ. Equ. 259, 1898–1932 (2015)
Merle, F.: Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. 45, 263–300 (1992)
Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51, 139–196 (1998)
Merle, F., Zaag, H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316, 103–137 (2000)
Quittner, P., Souplet, P.: Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2007)
Souplet, P.: Single-point blow-up for a semilinear parabolic system. J. Eur. Math. Soc. 11, 169–188 (2009)
Souplet, P., Tayachi, S.: Single-point blow-up for parabolic systems with exponential nonlinearities and unequal diffusivities. Nonlinear Anal. 138, 428–447 (2016)
Velázquez, J.J.L.: Estimates on the $$(n-1)$$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J. 42, 445–476 (1993)
Weissler, F.B.: Single point blow-up for a semilinear initial value problem. J. Differ. Equ. 55, 204–224 (1984)
Yagisita, H.: Blow-up profile of a solution for a nonlinear heat equation with small diffusion. J. Math. Soc. Jpn. 56, 993–1005 (2004)
Zaag, H.: A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure. Comm. Pure Appl. Math. 54, 107–133 (2001)
Zaag, H.: On the regularity of the blow-up set for semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 505–542 (2002)
Zaag, H.: One dimensional behavior of singular $$N$$ dimensional solutions of semilinear heat equations. Comm. Math. Phys. 225, 523–549 (2002)
Zaag, H.: Regularity of the Blow-Up Set and Singular Behavior for Semilinear Heat Equations, Mathematics & mathematics education (Bethlehem, 2000), pp. 337–347. World Science Publications, River Edge (2002)