Blow-up phenomena and peakons for the b-family of FORQ/MCH equations

Journal of Differential Equations - Tập 266 - Trang 6771-6787 - 2019
Shaojie Yang1, Zhijun Qiao2, Tianzhou Xu1
1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
2School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

Tài liệu tham khảo

Danchin, 2005, Fourier Analysis Methods for PDEs Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 Kato, 1975, Quasi-linear equations of evolution, with applications to partial differential equations, vol. 448, 25 Holm, 2003, Nonlinear balance and exchange of stability of dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett. A, 308, 437, 10.1016/S0375-9601(03)00114-2 Holm, 2003, Wave structure and nonlinear balance in a family of 1+1 evolutionary PDE's, SIAM J. Appl. Dyn. Syst., 2, 323, 10.1137/S1111111102410943 Dullin, 2004, On asymptotically equivalent shallow water wave equations, Phys. D: Nonlinear Phenom., 190, 1, 10.1016/j.physd.2003.11.004 Fokas, 1981, Symplectic structures, their Bäklund transformation and hereditary symmetries, Phys. D, 4, 47, 10.1016/0167-2789(81)90004-X Camassa, 1993, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661, 10.1103/PhysRevLett.71.1661 Fisher, 1999, The Camassa–Holm equation: conserved quantities and the initial value problem, Phys. Lett. A, 259, 371, 10.1016/S0375-9601(99)00466-1 Dai, 1998, Model equations for nolinear dispersive waves in a compressible Mooney–Rivlin rod, Acta Mech., 127, 193, 10.1007/BF01170373 Constantin, 2001, On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457, 953, 10.1098/rspa.2000.0701 Qiao, 2003, The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239, 309, 10.1007/s00220-003-0880-y Constantin, 2006, Inverse scattering transform for the Camassa–Holm equation, Inverse Probl., 22, 2197, 10.1088/0266-5611/22/6/017 Monvel, 2009, Long-time asymptotics for the Camassa–Holm equation, SIAM J. Math. Anal., 41, 1559, 10.1137/090748500 Alber, 1994, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's, Lett. Math. Phys., 32, 137, 10.1007/BF00739423 Cao, 2004, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models, J. Dynam. Differential Equations, 16, 167, 10.1023/B:JODY.0000041284.26400.d0 Constantin, 2006, The trajectories of particles in Stokes waves, Invent. Math., 166, 23, 10.1007/s00222-006-0002-5 Qiao, 2006, On peaked and smooth solitons for the Camassa–Holm equation, Europhys. Lett., 73, 657, 10.1209/epl/i2005-10453-y Constantin, 2007, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44, 423, 10.1090/S0273-0979-07-01159-7 Constantin, 2011, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173, 559, 10.4007/annals.2011.173.1.12 Kouranbaeva, 1998, The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40, 857, 10.1063/1.532690 Misiolek, 1998, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24, 203, 10.1016/S0393-0440(97)00010-7 Constantin, 2002, Stability of the Camassa–Holm solitons, J. Nonlinear Sci., 12, 415, 10.1007/s00332-002-0517-x Constantin, 2000, Stability of peakons, Comm. Pure Appl. Math., 53, 603, 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L Bressan, 2007, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183, 215, 10.1007/s00205-006-0010-z Bressan, 2007, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl., 5, 1, 10.1142/S0219530507000857 Li, 2000, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162, 27, 10.1006/jdeq.1999.3683 Danchin, 2001, A few remarks on the Camassa–Holm equation, Differential Integral Equations, 14, 953, 10.57262/die/1356123175 Danchin, 2003, A note on well-posedness for Camassa–Holm equation, J. Differential Equations, 192, 429, 10.1016/S0022-0396(03)00096-2 Constantin, 1998, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229, 10.1007/BF02392586 Constantin, 1998, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26, 303 Constantin, 2000, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, 50, 321, 10.5802/aif.1757 Constantin, 2000, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233, 75, 10.1007/PL00004793 Degasperis, 1998, Asymptotic integrability, 23 Degasperis, 2002, A new integrable equation with peakon solutions, Theoret. Math. Phys., 133, 1463, 10.1023/A:1021186408422 Qiao, 2004, Integrable hierarchy (the DP hierarchy), 3×3 constrained systems, and parametric and stationary solutions, Acta Appl. Math., 83, 199, 10.1023/B:ACAP.0000038872.88367.dd Qiao, 2004, A new integrable hierarchy (short wave model for the DP), parametric solution, and traveling wave solution, Math. Phys. Anal. Geom., 7, 289, 10.1007/s11040-004-3090-8 Constantin, 2009, The hydrodynamical relevant of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., 192, 165, 10.1007/s00205-008-0128-2 Lundmark, 2005, Multi-peakon solutions of the Degasperis–Procesi equation, Inverse Probl., 19, 1241, 10.1088/0266-5611/19/6/001 Lenells, 2005, Traveling wave solutions of the Degasperis–Procesi equation, J. Math. Anal. Appl., 306, 72, 10.1016/j.jmaa.2004.11.038 Zhang, 2007, Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition, Math. Phys. Anal. Geom., 10, 205, 10.1007/s11040-007-9027-2 Lin, 2010, Stability of peakons for the Degasperis–Procesi equation, Comm. Pure Appl. Math., 62, 125 Zhou, 2004, Blow-up phenomenon for the integrable Degasperis–Procesi equation, Phys. Lett. A, 328, 157, 10.1016/j.physleta.2004.06.027 Escher, 2006, Global weak solutions and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal., 241, 457, 10.1016/j.jfa.2006.03.022 Liu, 2006, Global existence and blow-up phenomena for the Degasperis–Procesi equation, Comm. Math. Phys., 267, 801, 10.1007/s00220-006-0082-5 Qiao, 2006, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701, 10.1063/1.2365758 Qiao, 2007, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons, J. Math. Phys., 48, 10.1063/1.2759830 Fokas, 1995, On a class of physically important integrable equations, Phys. D, 87, 145, 10.1016/0167-2789(95)00133-O Fuchssteiner, 1996, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation, Phys. D, 95, 229, 10.1016/0167-2789(96)00048-6 Olver, 1996, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900, 10.1103/PhysRevE.53.1900 Gui, 2013, Wave-breaking and peakons for a modified Camassa–Holm equation, Comm. Math. Phys., 319, 731, 10.1007/s00220-012-1566-0 Fu, 2013, On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity, J. Differential Equations, 255, 1905, 10.1016/j.jde.2013.05.024 Himonas, 2014, The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation, Nonlinear Anal., 95, 499, 10.1016/j.na.2013.09.028 Zhang, 2016, Global wellposedness of cubic Camassa–Holm equations, Nonlinear Anal., 133, 61, 10.1016/j.na.2015.11.020 Himonas, 2014, Höder continuity for the Fokas–Olver–Rosenau–Qiao equation, J. Nonlinear Sci., 24, 1105, 10.1007/s00332-014-9212-y Chen, 2015, Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion, Adv. Math., 272, 225, 10.1016/j.aim.2014.12.003