Blow up of solutions of semilinear wave equations related to nonlinear waves in de Sitter spacetime
Tóm tắt
Consider a nonlinear wave equation for a massless scalar field with self-interaction in the spatially flat de Sitter spacetime. We show that blow-up in a finite time occurs for the equation with arbitrary power nonlinearity as well as upper bounds of the lifespan of blow-up solutions. The blow-up condition is the same as in the accelerated expanding Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We also show the same results for the space derivative nonlinear term.
Tài liệu tham khảo
Bui, T.B.N., Reissig, M.: Global existence of small data solutions for wave models with sub-exponential propagation speed. Nonlinear Anal. 129, 173–188 (2015)
Chen, S., Gibbons, G. W., Li, Y., Yang, Y.: Friedmann’s equations in all dimensions and Chebyshev’s theorem. J. Cosmol. Astropart. Phys. 35 (2014)
D’Abbicco, M., Lucente, S.: A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13, 867–892 (2013)
Ebert, M.R., Reissig, M.: Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Anal. Real World Appl. 40, 14–54 (2018)
Galstian, A.: Semilinear wave equation in the de Sitter spacetime with hyperbolic spatial part. In: Dang, P., Ku, M., Qian, T., Rodino, L.G. (eds.) New Trends in Analysis and Interdisciplinary Applications. Trends in Mathematics: Research Perspectives, pp. 489–498. Springer International Publishing, Cham (2017)
Galstian, A., Yagdjian, K.: Finite lifespan of solutions of the semilinear wave equation in the Einstein-de Sitter spacetime. Rev. Math. Phys. 32(2050018), 31 (2020). https://doi.org/10.1142/S0129055X2050018X
Ikeda, M., Inui, T., Wakasugi, Y.: The Cauchy problem for the nonlinear damped wave equation with slowly decaying data. NoDEA Nonlinear Differ. Equ. Appl. 24(2), 53 (2017)
Ikeda, M., Sobajima, M.: Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method. Nonlinear Anal. 182, 57–74 (2019)
Ikeda, M., Wakasugi, Y.: A note on the lifespan of solutions to the semilinear damped wave equation. Proc. Am. Math. Soc. 143, 163–171 (2015)
John, F.: Nonlinear Wave Equations. Formation of Singularities. Amer. Math. Soc, Providence (1990)
Sogge, C.D.: Lectures on Non-Linear Wave Equations, 2nd edn. International Press of Boston Inc, Somerville (2008)
Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001)
Tsutaya, K., Wakasugi, Y.: Blow up of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime. J. Math. Phys. 61, 091503 (2020). https://doi.org/10.1063/1.5139301
Tsutaya, K., Wakasugi, Y.: On Glassey’s conjecture for semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime. Boundary Value Problems 2021, 94 (2021). https://doi.org/10.1186/s13661-021-01571-0
Tsutaya, K., Wakasugi, Y.: On heatlike lifespan of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime. J. Math. Anal. Appl. 500, 125133 (2021). https://doi.org/10.1016/j.jmaa.2021.125133
Tsutaya, K., Wakasugi, Y.: Blow up of solutions of semilinear wave equations in accelerated expanding Friedmann-Lemaître-Robertson-Walker spacetime. Rev. Math. Phys. 33(2250003), 16 (2022). https://doi.org/10.1142/S0129055X22500039
Wakasugi, Y.: Critical exponent for the semilinear wave equation with scale invariant damping. In: Fourier Anal.: Trends Math. Springer, pp. 375–390 (2014)
Yagdjian, K.: The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete Contin. Dyn. Syst. 2, 679–696 (2009)
Yagdjian, K.: Global existence of the scalar field in de Sitter spacetime. J. Math. Anal. Appl. 396, 323–344 (2012)
Zhang, Q.S.: A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris 333, 109–114 (2001)