Blossoms and Optimal Bases
Tóm tắt
Từ khóa
Tài liệu tham khảo
P.J. Barry, De Boor-Fix dual functionals and algorithms for Tchebychevian B-splines curves, Constr. Approx. 12 (1996) 385–408.
J.-M. Carnicer and J.-M. Peña, Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math. 1 (1993) 173–196.
J.-M. Carnicer and J.-M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines, Comput. Aided Geom. Design 11 (1994) 633–654.
J.-M. Carnicer and J.-M. Peña, Total positivity and optimal bases, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 133–155.
P. Costantini, On monotone and convex spline interpolation, Math. Comp. 46 (1986) 203–214.
P. Costantini, Curve and surface construction using variable degree polynomial splines, Comput. Aided Geom. Design 17 (2000) 419–446.
T.N.T. Goodman, Shape preserving representations, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 333–357.
T.N.T. Goodman, Total positivity and the shape of curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 157–186.
T.N.T. Goodman and M.-L. Mazure, Blossoming beyond extended Chebyshev spaces, J. Approx. Theory 109 (2001) 48–81.
T.N.T. Goodman and C.A. Micchelli, Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl. 99 (1988) 225–252.
T.N.T. Goodman and H.B. Said, Shape preserving properties of the generalized Ball basis, Comput. Aided Geom. Design 8 (1991) 115–121.
P.D. Kaklis and D.G. Pandelis, Convexity preserving polynomial splines of non-uniform degree, IMA J. Numer. Anal. 10 (1990) 223–234.
S. Karlin, Total Positivity (Stanford Univ. Press, Stanford, 1968).
S. Karlin and W.J. Studden, Tchebycheff Systems (Wiley Interscience, New York, 1966).
E. Mainar and J.-M. Peña, Quadratic-cycloidal curves, Preprint.
M.-L. Mazure, Blossoming: a geometrical approach, Constr. Approx. 15 (1999) 33–68.
M.-L. Mazure, Chebyshev-Bernstein bases, Comput. Aided Geom. Design 16 (1999) 649–669.
M.-L. Mazure, Bernstein bases in Müntz spaces, Numer. Algorithms 22 (1999) 285–304.
M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comput. Math. 14 (2001) 129–156.
M.-L. Mazure, Quasi-Chebyshev splines with connection matrices. Application to variable degree polynomial splines, Comput. Aided Geom. Design 18 (2001) 287–298.
M.-L. Mazure, B-spline bases and osculating flats: One result of H.-P. Seidel revisited, to appear in Math. Modelling Numer. Anal.
M.-L. Mazure, On the equivalence between existence of B-spline bases and existence of blossoms, Preprint.
M.-L. Mazure and H. Pottmann, Tchebycheff Curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 187–218.
H. Pottmann, The geometry of Tchebycheffian splines, Comput. Aided Geom. Design 10 (1993) 181–210.
L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–358.
L.L. Schumaker, Spline Functions (Wiley Interscience, New York, 1981).