Blood glucose estimation based on ECG signal

Khadidja Fellah Arbi1, Sofiane Soulimane2, Fayçal Saffih3, Mohammed Amine Bechar2, Omar Azzoug4
1Biomedical Engineering Laboratory, University of Tlemcen, Tlemcen, Algeria. [email protected].
2Biomedical Engineering Laboratory, University of Tlemcen, Tlemcen, Algeria
3Centre for the Development of Advanced Technologies (CDTA) at Setif, University of Setif1, EL-Baz Campus, Setif, Algeria
4ESPTLAB. University of Tlemcen, Tlemcen, Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vishnu S, Ramson SRJ, Jegan R (2020) Internet of Medical Things (IoMT) - An overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). IEEE, Coimbatore, India, pp 101–104

Ometov A, Shubina V, Klus L et al (2021) A survey on wearable technology history state-of-the-art and current challenges. Comput Netw. https://doi.org/10.1016/j.comnet.2021.108074

Fellah Arbi K, Soulimane S, Saffih F (2020) IoT technologies combining glucose control with physiological signal: comparative study. In: 2020 International Conference on Electrical Engineering (ICEE). IEEE, Istanbul, Turkey, pp 1–6

Gusev M, Poposka L, Spasevski G et al (2020) Noninvasive glucose measurement using machine learning and neural network methods and correlation with heart rate variability. J Sens 2020:1–13. https://doi.org/10.1155/2020/9628281

Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C (2018) On type 1 diabetes mellitus pathogenesis. Endocr Connect 7:R38–R46. https://doi.org/10.1530/EC-17-0347

Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes. N Engl J Med 353(25):2643–2653

Freeman, R. (2007). Hypoglycemia and the Autonomic Nervous System. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_23

Seshadri DR, Bittel B, Browsky D et al (2020) Accuracy of Apple Watch for Detection of Atrial Fibrillation. Circulation 141:702–703. https://doi.org/10.1161/CIRCULATIONAHA.119.044126

Bayoumy K, Gaber M, Elshafeey A et al (2021) Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 18:581–599. https://doi.org/10.1038/s41569-021-00522-7

Lipponen JA, Kemppainen J, Karjalainen PA et al (2011) Hypoglycemia detection based on cardiac repolarization features. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Boston, MA, pp 4697–4700

Alexakis C, Nyongesa HO, Saatchi R et al (2003) Feature extraction and classification of electrocardiogram (ECG) signals related to hypoglycaemia. Computers in Cardiology, 2003. IEEE, Thessaloniki Chalkidiki, Greece, pp 537–540

D’Imperio S, Monasky MM, Micaglio E et al (2021) Early morning QT prolongation during hypoglycemia: only a matter of glucose? Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.688875

Murphy NP, Ford-Adams ME, Ong KK et al (2004) Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia 47:1940–1947. https://doi.org/10.1007/s00125-004-1552-y

Lee SP, Yeoh L, Harris ND et al (2004) Influence of Autonomic neuropathy on QTc interval lengthening during hypoglycemia in type 1 diabetes. Diabetes 53:1535–1542. https://doi.org/10.2337/diabetes.53.6.1535

Elvebakk O, Tronstad C, Birkeland KI et al (2019) A multiparameter model for non-invasive detection of hypoglycemia. Physiol Meas. https://doi.org/10.1088/1361-6579/ab3676

Laitinen T, Lyyra-Laitinen T, Huopio H et al (2008) Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects: ECG changes during hypoglycemia. Ann Noninvasive Electrocardiol 13:97–105. https://doi.org/10.1111/j.1542-474X.2008.00208.x

Nguyen LL, Su S, Nguyen HT (2012) Identification of Hypoglycemia and Hyperglycemia in Type 1 Diabetic patients using ECG parameters. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, San Diego, CA, pp 2716–2719

Porumb M, Stranges S, Pescapè A, Pecchia L (2020) Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep 10:170. https://doi.org/10.1038/s41598-019-56927-5

Nguyen HT, Ghevondian N, Jones TW. Neural-network detection of hypoglycemic episodes in children with type 1 diabetes using physiological parameters. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:6053-6. https://doi.org/10.1109/IEMBS.2006.259482. PMID: 17945929

Howsmon D, Bequette BW (2015) Hypo- and hyperglycemic alarms: devices and algorithms. J Diabetes Sci Technol 9:1126–1137. https://doi.org/10.1177/1932296815583507

Cordeiro R, Karimian N, Park Y (2021) Hyperglycemia identification using ECG in deep learning era. Sensors 21:6263. https://doi.org/10.3390/s21186263

Olde Bekkink M, Koeneman M, de Galan BE, Bredie SJ (2019) Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device. Diabetes Care 42:689–692. https://doi.org/10.2337/dc18-1843

Nuryani N, Ling SSH, Nguyen HT (2012) Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Ann Biomed Eng 40:934–945. https://doi.org/10.1007/s10439-011-0446-7

San PP, Ling SH, Nguyen HT (2016) Deep learning framework for detection of hypoglycemic episodes in children with type 1 diabetes. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Orlando, FL, USA, pp 3503–3506

Laguna, Pablo, Roger G. Mark, AL et al (1997) A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Computers in Cardiology. Vol 24 pp 673–676

Dubosson F, Ranvier J-E, Bromuri S et al (2018) The open D1NAMO dataset: a multi-modal dataset for research on non-invasive type 1 diabetes management. Inform Med Unlocked 13:92–100. https://doi.org/10.1016/j.imu.2018.09.003

Luna BA, Batchvarov VN, Malik M (2006) The morphology of the electrocardiogram. In: Camm AJ, Luscher TF, Serruys PW, editors. ESC Textbook of Cardiovascular Medicine. 1st ed. Oxford: Black well Publishing; p 1–36

Arakawa T, Tomoto K, Nitta H et al (2020) A Wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal Chem 92:12201–12207. https://doi.org/10.1021/acs.analchem.0c01201

Kim S, Jeon H-J, Park S et al (2020) Tear glucose measurement by reflectance spectrum of a nanoparticle embedded contact lens. Sci Rep 10:8254. https://doi.org/10.1038/s41598-020-65103-z

Das S, Pal M (2020) Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ab67a6

Xue Y, Thalmayer AS, Zeising S et al (2022) Commercial and scientific solutions for blood glucose monitoring—a review. Sensors 22:425. https://doi.org/10.3390/s22020425

Lee I, Probst D, Klonoff D, Sode K (2021) Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research -. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2021.113054