Blood flow quantification from 2D phase contrast MRI in renal arteries using an unsupervised data driven approach

Zeitschrift für Medizinische Physik - Tập 19 - Trang 98-107 - 2009
Frank Gerrit Zöllner1,2, Jan Ankar Monssen3, Jarle Rørvik2,3, Arvid Lundervold3,4, Lothar R. Schad1
1Computer Assisted Clinical Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Germany
2Section for Radiology, Department of Surgical Sciences, University of Bergen, Bergen, Norway
3Department of Radiology, Haukeland University Hospital, Bergen, Norway
4Department of Biomedicine, University of Bergen, Norway

Tài liệu tham khảo

European Kidney Health Association. Factsheet: The Kidney in Health and Disease. 2008 [cited 2008 9.8.]; Available from: 〈http://www.ekha.eu/D26CF/Info/Kidney_Fact_Sheets.aspx〉. Garovic, 2005, Renovascular hypertension and ischemic nephropathy, Circulation, 112, 1362, 10.1161/CIRCULATIONAHA.104.492348 Binkert, 2001, Can MR Measurement of Renal Artery Flow and Renal Volume Predict the Outcome of Percutaneous Transluminal Renal Angioplasty?, CardioVascular and Interventional Radiology, 24, 233, 10.1007/s00270-001-0005-y Alhadad, 2005, Revascularisation of renal artery stenosis caused by fibromuscular dysplasia: effects on blood pressure during 7-year follow-up are influenced by duration of hypertension and branch artery stenosis, J Hum Hypertens, 19, 761, 10.1038/sj.jhh.1001893 Krijnen, 2004, Which patients with hypertension and atherosclerotic renal artery stenosis benefit from immediate intervention?, J Hum Hypertens, 18, 91, 10.1038/sj.jhh.1001641 Schad, 1993, MR velocity measurement in the pulmonary arteries: A comparative study, Z Med Phys, 3, 133, 10.1016/S0939-3889(15)70688-4 Weber-Fahr, 1998, Untersuchung komplexer Strömungen mit MRA-Techniken und Vergleich mit theoretischen Strömungsanalysen, Z Med Phys, 8, 75, 10.1016/S0939-3889(15)70239-4 Schoenberg, 1997, Renal artery stenosis: Grading of hemodynamic changes with cine phase-contrast MR blood flow measurements, Radiology, 203, 45, 10.1148/radiology.203.1.9122415 Bax, 2005, Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility, J Vasc Interv Radiol, 16, 807, 10.1097/01.RVI.0000161144.98350.28 Florez, 2006, Semiautomatic analysis of phase contrast magnetic resonance imaging of cerebrospinal fluid flow through the aqueduct of Sylvius, MAGMA, 19, 78, 10.1007/s10334-006-0030-6 Graves, 2001, Automated Analysis of Cine Phase Contrast Velocity Images using Scored Guided Erosion, Proceedings of the ISMRM, 9, 835 Yokosawa, 2005, Quantitative Measurements on the Human Ascending Aortic Flow Using 2D Cine Phase-Contrast Magnetic Resonance Imaging, JSME International Journal Series C, 48, 459, 10.1299/jsmec.48.459 Burkart, 1994, Cine phase-contrast MR flow measurements: improved precision using an automated method of vessel detection, J Comput Assist Tomogr, 18, 469, 10.1097/00004728-199405000-00023 Kozerke, 1999, Automatic vessel segmentation using active contours in cine phase contrast flow measurements, J Magn Reson Imaging, 10, 41, 10.1002/(SICI)1522-2586(199907)10:1<41::AID-JMRI6>3.0.CO;2-J Mansard, 2004, Quantification of multicontrast vascular MR images with NLSnake, an active contour model: In vitro validation and in vivo evaluation, Magn Reson Med, 51, 370, 10.1002/mrm.10722 Alperin, 2003, PUBS: pulsatility-based segmentation of lumens conducting non-steady flow, Magn Reson Med, 49, 934, 10.1002/mrm.10455 Zöllner FG, Monssen JA, Lundervold A, Rørvik J. Flow Quantification from 2D Phase Contrast MRI in Renal Arteries using Clustering. Bildverarbeitung für die Medizin 2008 – Algorithmen, Systeme, Anwendungen. 2008 April;377–81. MacQueen, 1967, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281 Bolshakova N, Azuaje F. Improving expression data mining through cluster validation. In: Azuaje F, editor. 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine. 2003. p. 19–22. Rousseeuw, 1987, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53, 10.1016/0377-0427(87)90125-7 Dice, 1945, Measures of the amount of ecologic association between species, Ecology, 26, 297, 10.2307/1932409 Grira N, Crucianu M, Boujemaa N. Unsupervised and semi-supervised clustering: a brief survey: MUSCLE Network of Excellence; 2004. Bezdek, 1999 Zöllner FG, Lundervold A, Kocinski M, Roervik J. Assessment of Renal Function from 3D Dynamic Contrast Enhanced MR images using Independent Component Analysis. Informatik Aktuell 2007;237–41. McKeown, 1998, Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping, 6, 160, 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 Wismüller, 2006, Cluster analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series, IEEE Trans Med Imaging, 25, 62, 10.1109/TMI.2005.861002 Zöllner, 2006, Towards quantification of kidney function by clustering volumetric MRI perfusion time series, Magnetic Resonance Materials in Physics, Biology and Medicine, 19, S103 Canstein, 2008, 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries, Magn Reson Med, 59, 535, 10.1002/mrm.21331 Qian G, Sural S, Gu Y, Pramanik S. Similarity between Euclidean and cosine angle distance for nearest neighbor queries. In: Haddad H, Omicini A, Wainwright RL, Liebrock LM, editors. ACM Symposium on Applied Computing (SAC). Nicosia, Cypres: Association for Computing Machinery; 2004. p. 1232–7. Dubes, 1987, How many clusters are best? – An experiment, Pattern Recognition, 20, 645, 10.1016/0031-3203(87)90034-3 Feng Y, Hamerly G. PG-means: learning the number of clusters in data. In: Schölkopf B, Platt J, Hoffman T, editors. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press; 2007. p. 393–400. Maulik, 2002, Performance evaluation of some clustering algorithms and validity indices, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24, 1650, 10.1109/TPAMI.2002.1114856 Käster T, Wendt V, Sagerer G. Comparing Clustering Methods for Database Categorization in Image Retrieval. In: Michaelis B, Krell G, editors. DAGM. Berlin Heidelberg: Springer; 2003. p. 228–35. Lotz, 2002, Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation, Radiographics, 22, 651, 10.1148/radiographics.22.3.g02ma11651 Salvador S, Chan P. Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms. Proc 16th IEEE Intl Conf on Tools with AI; 2004; 2004. p. 576–84. Nakamura, 1998, Determining number of clusters and prototype locations via multi-scale clustering, Pattern Recognition Letters, 19, 1265, 10.1016/S0167-8655(98)00099-3 Michaely, 2006, Renal artery stenosis: functional assessment with dynamic MR perfusion measurements-feasibility study, Radiology, 238, 586, 10.1148/radiol.2382041553 Larsson, 2008, Renal artery stenosis: Extracting quantitative parameters with a mathematical model fitted to magnetic resonance blood flow data, J Magn Reson Imaging, 27, 140, 10.1002/jmri.21232