Rối loạn chức năng hàng rào máu-não sau chấn thương não

Metabolic Brain Disease - Tập 30 - Trang 1093-1104 - 2015
Himakarnika Alluri1, Katie Wiggins-Dohlvik1, Matthew L. Davis1, Jason H. Huang2, Binu Tharakan1
1Department of Surgery, Baylor Scott & White Health & Texas A&M University Health Science Center, College of Medicine, Temple, USA
2Department of Neurosurgery, Baylor Scott & White Health & Texas A&M University Health Science Center, College of Medicine, Temple, USA

Tóm tắt

Chấn thương não là một nguyên nhân nghiêm trọng gây ra tỷ lệ mắc bệnh và tử vong trên toàn cầu. Sau chấn thương não, hàng rào máu-não, hàng rào bảo vệ giữa não và khoang mạch máu, trở nên bất thường, dẫn đến rò rỉ protein, dịch và sự di cư của các tế bào miễn dịch. Vì sự rò rỉ này có những tác động lâm sàng sâu sắc, bao gồm sự hình thành phù nề, tăng áp lực nội sọ và giảm huyết áp tưới máu, nên đã có nhiều sự quan tâm đến việc hiểu rõ hơn các cơ chế chịu trách nhiệm cho những sự kiện này. Nhiều con đường phân tử và nhiều chất trung gian đã được phát hiện tham gia vào quá trình phức tạp điều chỉnh tính thấm của hàng rào máu-não sau chấn thương não. Bài tổng quan này cung cấp thông tin cập nhật về các con đường sinh lý bệnh khác nhau và sự tiến bộ trong lĩnh vực rối loạn chức năng hàng rào máu-não và sự gia tăng tính thấm sau chấn thương não, bao gồm vai trò của các protein nối chặt khác nhau liên quan đến tính toàn vẹn và điều chỉnh hàng rào máu-não. Chúng tôi cũng đề cập đến những điểm yếu của các hệ thống hiện tại và đề xuất các chiến lược để cải thiện các khuyết tật chức năng khác nhau gây ra bởi dịch bệnh tiến triển này.

Từ khóa

#chấn thương não #rào cản máu-não #bất thường hàng rào máu-não #phù nề #áp lực nội sọ #huyết áp tưới máu

Tài liệu tham khảo

Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23 Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53 Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. doi:10.1016/j.nbd.2009.07.030 Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, Zimmerman MC, Chandra N, Haorah J (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291 Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31:693–705. doi:10.1038/jcbfm.2010.148 Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S (2011) Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 22(54). doi:10.3791/3063 Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584. doi:10.1101/cshperspect.a002584 Ankeny DP, Popovich PG (2010) B cells and autoantibodies: complex roles in CNS injury. Trends Immunol 31:332–338. doi:10.1016/j.it.2010.06.006 Annunziata P, Cioni C, Santonini R, Paccagnini E (2002) Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J Neuroimmunol 131:41–49 Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561. doi:10.1038/nature09522 Arshad F, Wang L, Sy C, Avraham S, Avraham HK (2010) Blood–brain barrier integrity and breast cancer metastasis to the brain. Patholo Res Int. doi:10.4061/2011/920509 Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13 Bannerman DD, Goldblum SE (1999) Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 79:1181–1199 Barzo P, Marmarou A, Fatouros P, Corwin F, Dunbar J (1996) Magnetic resonance imaging-monitored acute blood–brain barrier changes in experimental traumatic brain injury. J Neurosurg 85:1113–1121 Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997a) Biphasic pathophysiological response of vasogenic and cellularedema in traumatic brain swelling. Acta Neurochir Suppl 70:119–122 Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997b) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907 Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36 Bauer HC, Traweger A, Zweimueller-Mayer J, Lehner C, Tempfer H, Krizbai I, Wilhelm I, Bauer H (2011) New aspects of the molecular constituents of tissue barriers. J Neural Transm 118:7–21. doi:10.1007/s00702-010-0484-6 Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901 Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood–brain barrier 4–500 million years ago. Glia 56:699–708. doi:10.1002/glia.20642 Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM, Cahalan SD, Callanan JJ, Wallace E, Grant GA, Doherty CP, Humphries P (2012) Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 3:849. doi:10.1038/ncomms1852 Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422 Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266 Chen Y, Huang W, Constantini S (2013) Concepts and strategies for clinical management of blast-induced traumatic brain injury andposttraumatic stress disorder. J Neuropsychiatry Clin Neurosci Spring 25:103–110. doi:10.1176/appi.neuropsych.12030058 Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Zhang J (2014) The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci 342:93–100. doi:10.1016/j.jns.2014.04.032 Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600 Colicos MA, Dixon CE, Dash PK (1996) Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Res 739:111–119 Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19:836–853. doi:10.1089/ars.2012.4981 Czigner A, Mihály A, Farkas O, Büki A, Krisztin-Péva B, Dobó E, Barzó P (2007) Kinetics of the cellular immune response following closed head injury. Acta Neurochir (Wien) 149:281–289 Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72:648–672. doi:10.1002/ana.23648 Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566. doi:10.1038/nature09513 Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236. doi:10.1186/1742-2094-9-236 Dejana E, Lampugnani MG, Martinez-Estrada O, Bazzoni G (2004) The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol 44:743–748 Dietrich W, Erbguth F (2013) Increased intracranial pressure and brain edema. Med Klin Intensivmed Notfallmed 108:157–169 Ding J, Guo J, Yuan Q, Yuan F, Chen H, Tian H (2013) Inhibition of phosphatase and tensin homolog deleted on chromosome 10 decreases rat cortical neuron injury and blood–brain barrier permeability, and improves neurological functional recovery in traumatic brain injury model. PLoS One 8:e80429. doi:10.1371/journal.pone.0080429 Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262 Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69 Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and Neurotoxicology. Neurotoxicology 33:586–604. doi:10.1016/j.neuro.2011.12.009 Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511. doi:10.1007/s00281-009-0177-0 Fang B, Liang M, Yang G, Ye Y, Xu H, He X, Huang JH (2014) Expression of S100A6 in rat hippocampus after traumatic brain injury due to lateral headacceleration. Int J Mol Sci 15(4):6378–6390. doi:10.3390/ijms15046378 Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753 Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta Finnie JW, Blumbergs PC (2002) Traumatic brain injury. Vet Pathol 39:679–689 Fujimoto M, Takagi Y, Aoki T, Hayase M, Marumo T, Gomi M, Nishimura M, Kataoka H, Hashimoto N, Nozaki K (2008) Tissue inhibitor of metalloproteinases protect blood–brain barrier disruption in focal cerebral ischemia. J Cereb Blood Flow Metab 28:1674–1685 Fukuda AM, Badaut J (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279 Gao W, Xu H, Liang M, Huang JH, He X (2013) Association between reduced expression of hippocampal glucocorticoid receptors and cognitive dysfunction in a rat model of traumatic brain injury due to lateral head acceleration. Neurosci Lett 533:50–54. doi:10.1016/j.neulet.2012.11.020 Gean AD, Fischbein NJ (2010) Head Trauma. Neuroimaging Clin N Am 20:527–556. doi:10.1016/j.nic.2010.08.001 Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44 Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Leuckocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39. doi:10.1111/j.1365-2990.2010.01140.x Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76:97–104. doi:10.1002/msj.20104 Guest J, Garg M, Bilgin A, Grant R (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis 12:79. doi:10.1186/1476-511X-12-79 Haber M, Abdel Baki SG, Grin’kina NM, Irizarry R, Ershova A, Orsi S, Grill RJ, Dash P, Bergold PJ (2013) Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol 249:169–177. doi:10.1016/j.expneurol.2013.09.002 Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR (2007) Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25:231–238 Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV (2010) Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood–brain barrier permeability. Neurol Res 32:629–635. doi:10.1179/016164109X12464612122731 Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods. J Neurotrauma 25:235–247. doi:10.1089/neu.2007.0383 Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 74:385–410 Helmy A, Vizcaychipi M, Gupta AK (2007) Traumatic brain injury: intensive care management. Br J Anaesth 99:32–42 Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–137 Hoffman AN, Cheng JP, Zafonte RD, Kline AE (2008) Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits. Life Sci 83:602–607. doi:10.1016/j.lfs.2008.08.007 Holbourn AH (1943) Mechanics of head injuries. Lancet 2:438–441 Hooper C, Pinteaux-Jones F, Fry VA, Sevastou IG, Baker D, Heales SJ, Pocock JM (2009) Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood–brain barrier damage. J Neurochem 109:694–705 Hue CD, Cao S, Dale Bass CR, Meaney DF, Morrison B 3rd (2014) Repeated primary blast injury causes delayed recovery, but not additive disruption, in an in vitro blood–brain barrier model. J Neurotrauma 31:951–960. doi:10.1089/neu.2013.3149 Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353 Kline AE, Wagner AK, Westergom BP, Malena RR, Zafonte RD, Olsen AS, Sozda CN, Luthra P, Panda M, Cheng JP, Aslam HA (2007) Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav Brain Res 177:186–194 Kline AE, Hoffman AN, Cheng JP, Zafonte RD, Massucci JL (2008) Chronic administration of antipsychotics impede behavioral recovery after experimental traumatic brain injury. Neurosci Lett 448:263–267. doi:10.1016/j.neulet.2008.10.076 Könnecke H, Bechmann I (2013) The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol 2013:914104 Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50:258–265 Lee P, Kim J, Williams R, Sandhir R, Gregory E, Brooks WM, Berman NE (2011) Effects of aging on blood brain barrier and matrix metalloproteases following controlled cortical impact in mice. Exp Neurol 234:50–61. doi:10.1016/j.expneurol.2011.12.016 Liao Y, Liu P, Guo F, Zhang ZY, Zhang Z (2013) Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One 8:e68963. doi:10.1371/journal.pone.0068963 Liddelow SA (2011) Fluids and barriers of the CNS: a historical viewpoint. Fluids Barrier CNS 8:2. doi:10.1186/2045-8118-8-2 Lindahl P, Johansson BR, Leeven P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245 Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV (2013) Modeling the blood–brain barrier using stem cell sources. Fluids Barrier CNS 10:2. doi:10.1186/2045-8118-10-2 Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147:S232–S240 Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL (2011) Detection of blastrelated traumatic brain injury in U.S. military personnel. N Engl J Med 364:2091–2100 Maegele M (2013) Coagulopathy after traumatic brain injury: incidence, pathology, and treatment options. Transfusion 53:28S–37S. doi:10.1111/trf.12033 Mariano C, Palmela I, Pereira P, Fernandes A, Falcão AS, Cardoso FL, Vaz AR, Campos AR, Gonçalves-Ferreira A, Kim KS, Brites D, Brito MA (2013) Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 351:397–407. doi:10.1007/s00441-012-1529-y Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234 Mayhan WG (2001) Regulation of blood–brain barrier permeability. Microcirculation 8:89–104 Meaney DF, Margulies SS, Smith DH (2001) Diffuse axonal injury. J Neurosurg 95:1108–1110 Miller F, Afonso PV, Gessain A, Ceccaldi PE (2012) Blood–brain barrier and retroviral infections. Virulence 3:222–229. doi:10.4161/viru.19697 Minagar A, Alexander JS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549 Morrison B 3rd, Elkin BS, Dollé JP, Yarmush ML (2011) In vitro models of traumatic brain injury. Annu Rev Biomed Eng 13:91–126. doi:10.1146/annurev-bioeng-071910-124706 Morrison G, Fraser DD, Cepinskas G (2013) Mechanisms and consequences of acquired brain injury during development. Pathophysiology 20:49–57. doi:10.1016/j.pathophys.2012.02.006 Nag S (2011) Morphology and properties of brain endothelial cells. Methods Mol Biol 686:3–47. doi:10.1007/978-1-60761-938-3_1 Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood–brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37:3–23. doi:10.1111/j.1365-2990.2010.01138.x Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263. doi:10.1016/j.neuint.2008.12.002 Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96 Ng I, Yap E, Tan WL, Kong NY (2003) Blood–brain barrier disruption following traumatic brain injury: roles of tight junction proteins. Ann Acad Med Singa 32:S63–S66 Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood–brain barrier. Nat Med 19:1584–1596. doi:10.1038/nm.3407 O’Connor WT, Smyth A, Gilchrist MD (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130:106–113. doi:10.1016/j.pharmthera.2011.01.001 Oldendorf WH (1977) The blood–brain barrier. Exp Eye Res 25:177–190 Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778:646–659 Patro A, Mohanty S (2009) Pathophysiology and treatment of traumatic brain edema. Indian J Neurotrauma 6:11–16 Pearson WS, Sugerman DE, McGuire LC, Coronado VG (2012) Emergency department visits for traumatic brain injury in older adults in the United States: 2006–08. West J Emerg Med 13:289–293. doi:10.5811/westjem.2012.3.11559 Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharm 1:223–236 Pop V, Badaut J (2011) A neurovascular perspective for long-term changes after brain trauma. Transl Stroke Res 2:533–545 Prevost TP, Jin G, de Moya MA, Alam HB, Suresh S, Socrate S (2011) Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomater 7:4090–4101. doi:10.1016/j.actbio.2011.06.032 Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364 Rapoport SI (1976) Opening of the blood–brain barrier by acute hypertension. Exp Neurol 52:467–479 Reichert M, Muller T, Hunziker W (2000) The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin–Darby canine kidney I cells—evidence for a role of b- catenin /Tcf/Lef signaling. J Biol Chem 275:9492–9500 Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, Giese RN, Wang B, Shi X, Nedergaard M (2013) ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 33:834–845 Rosner MJ, Rosner MD (1995) Cerebral prefusion pressure: management protocol and clinical results. J Neurosurg 83:949–962 Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT, Workshop Scientific Team and Advisory Panel Members (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738. doi:10.1089/neu.2008.0586 Schulzke JD, Fromm M (2009) Tight junctions: molecular structure meets function. Ann N Y Acad Sci 1165:1–6. doi:10.1111/j.1749-6632.2009.04925.x Scott BN, Roberts DJ, Robertson HL, Kramer AH, Laupland KB, Ousman SS, Kubes P, Zygun DA (2013) Incidence, prevalence, and occurrence rate of infection among adults hospitalized after traumatic brain injury: study protocol for a systematic review and meta-analysis. Syst Rev 2:68 Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77:141–148 Shear DA, Lu XC, Pedersen R, Wei G, Chen Z, Davis A, Yao C, Dave J, Tortella FC (2011) Severity profile of penetrating ballistic-like brain injury on neurofunctional outcome, blood–brain barrier permeability, and brain edema formation. J Neurotrauma 28:2185–2195. doi:10.1089/neu.2011.1916 Shlosberg D, Benifla M, Kaufer D, Friedman (2010) A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403. doi:10.1038/nrneurol.2010.74 Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896 Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36:1376–1381. doi:10.1016/j.neubiorev.2012.02.013 Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192. doi:10.2174/157015908785777210 Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR (2013) Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 7:61. doi:10.3389/fnint.2013.00061 Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T (2008) The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153:175–181. doi:10.1016/j.neuroscience.2008.02.012 Taliquist MD, French WJ, Soriano P (2003) Additive effects of PDGF receptor β signaling pathways in vascular smooth muscle cell development. PLoS Biol 1:e52 Tanno H, Nockels RP, Pitts LH, Noble LJ (1993) Immunolocalization of heat shock protein after fluid percussive brain injury and relationship to breakdown of the blood–brain barrier. J Cereb Blood Flow Metab 13:116–124 Thal SC, Luh C, Schaible EV, Timaru-Kast R, Hedrich J, Luhmann HJ, Engelhard K, Zehendner CM (2012) Volatile anesthetics influence blood–brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLoS One 7:e50752. doi:10.1371/journal.pone.0050752 Thurman DJ, Branche CM, Sniezek JE (1998) The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J Head Trauma Rehabil 3:1–8 Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A, Zumsteg D, Friedman (2008) A Blood–brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79:774–777 Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029 Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42:221–242 Walsh JT, Kipnis J (2011) Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 17:541–547. doi:10.1016/j.molmed.2011.05.012 Wang YF, Gu YT, Qin GH, Zhong L, Meng YN (2013) Curcumin ameliorates the permeability of the blood–brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 51:344–351. doi:10.1007/s12031-013-9989-4 Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol 3:60. doi:10.3389/fphar.2012.00060. eCollection 2012 Weckbach S, Neher M, Losacco JT, Bolden AL, Kulik L, Flierl MA, Bell SE, Holers VM, Stahel PF (2012) Challenging the role of adaptive immunity in neurotrauma: Rag1(−/−) mice lacking mature B and T cells do not show neuroprotection after closed head injury. J Neurotrauma 29:1233–1242. doi:10.1089/neu.2011.2169 Werner C, Engelhard K (2007) Pathiophysiology of traumatic brain injury. Br J Anaesth 99:4–9 Wiggins-Dohlvik K, Merriman M, Shaji CA, Alluri H, Grimsley M, Davis ML, Smith RW, Tharakan B (2014) Tumor necrosis factor-α disruption of brain endothelial cell barrier is mediated through matrix metalloproteinase-9. Am J Surg. doi:10.1016/j.amjsurg.2014.08.014 Xi G, Keep RF, Hoff JT (2002) Pathophysiology of brain edema formation. Neurosurg Clin N Am 13:371–383 Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142. doi:10.1038/nrn3407 Zink BJ, Szmydynger-Chodobska J, Chodobski A (2010) Emerging concepts in the pathophysiology of traumatic brain injury. PsychiatrY Clin North Am 33:741–756. doi:10.1016/j.psc.2010.08.005