Blood Clotting and the Pathogenesis of Types I and II Hereditary Angioedema

Clinical Reviews in Allergy - Tập 60 Số 3 - Trang 348-356 - 2021
Steven de Maat1, Kusumam Joseph2, Coen Maas1, Allen P. Kaplan3
1CDL Research, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
2BioCryst Pharmaceuticals Inc., Durham, NC, USA
3Department of Medicine, Medical University of South Carolina, Charleston, SC, USA

Tóm tắt

AbstractThe plasma contact system is the initiator of the intrinsic pathway of coagulation and the main producer of the inflammatory peptide bradykinin. When plasma is exposed to a negatively charged surface the two enzymes factor XII (FXII) and plasma prekallikrein (PK) bind to the surface alongside the co-factor high molecular weight kininogen (HK), where PK is non-covalently bound to. Here, FXII and PK undergo a reciprocal activation feedback loop that leads to full contact system activity in a matter of seconds. Although naturally occurring negatively charged surfaces have shown to be involved in the role of the contact system in thrombosis, such surfaces are elusive in the pathogenesis of bradykinin-driven hereditary angioedema (HAE). In this review, we will explore the molecular mechanisms behind contact system activation, their assembly on the endothelial surface, and their role in the HAE pathophysiology.

Từ khóa


Tài liệu tham khảo

Björkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schonig K et al (2015) Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 125(8):3132–3146. https://doi.org/10.1172/JCI77139

Stavrou EX, Fang C, Bane KL, Long AT, Naudin C, Kucukal E et al (2018) Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest 128(3):944–959. https://doi.org/10.1172/JCI92880

Fink E, Bhoola KD, Snyman C, Neth P, Figueroa CD (2007) Cellular expression of plasma prekallikrein in human tissues. Biol Chem 388(9):957–963. https://doi.org/10.1515/BC.2007.104

Hermann A, Arnhold M, Kresse H, Neth P, Fink E (1999) Expression of plasma prekallikrein mRNA in human nonhepatic tissues and cell lineages suggests special local functions of the enzyme. Biol Chem 380(9):1097–1102. https://doi.org/10.1515/BC.1999.136

Neth P, Arnhold M, Nitschko H, Fink E (2001) The mRNAs of prekallikrein, factors XI and XII, and kininogen, components of the contact phase cascade are differentially expressed in multiple non-hepatic human tissues. Thromb Haemost 85(6):1043–1047. https://doi.org/10.1055/s-0037-1615961

Mandle RJ, Colman RW, Kaplan AP (1976) Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci U S A 73(11):4179–4183. https://doi.org/10.1073/pnas.73.11.4179

Scott CF, Colman RW (1980) Function and immunochemistry of prekallikrein-high molecular weight kininogen complex in plasma. J Clin Invest 65(2):413–421. https://doi.org/10.1172/JCI109684

Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S (1985) Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem 260(14):8610–8617

Thompson RE, Mandle R Jr, Kaplan AP (1977) Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest 60(6):1376–1380. https://doi.org/10.1172/JCI108898

Thompson RE, Mandle R Jr, Kaplan AP (1979) Studies of binding of prekallikrein and Factor XI to high molecular weight kininogen and its light chain. Proc Natl Acad Sci U S A 76(10):4862–4866. https://doi.org/10.1073/pnas.76.10.4862

Thompson RE, Mandle R Jr, Kaplan AP (1978) Characterization of human high molecular weight kininogen. Procoagulant activity associated with the light chain of kinin-free high molecular weight kininogen. J Exp Med 147(2):488–99. https://doi.org/10.1084/jem.147.2.488

Muller-Esterl W, Vohle-Timmermann M, Boos B, Dittman B (1982) Purification and properties of human low molecular weight kininogen. Biochim Biophys Acta 706(2):145–152. https://doi.org/10.1016/0167-4838(82)90480-0

Chen LM, Chung P, Chao S, Chao L, Chao J (1992) Differential regulation of kininogen gene expression by estrogen and progesterone in vivo. Biochim Biophys Acta 1131(2):145–151. https://doi.org/10.1016/0167-4781(92)90069-c

Clark CC, Hofman ZLM, Sanrattana W, den Braven L, de Maat S, Maas C (2020) The fibronectin type II domain of Factor XII ensures zymogen quiescence. Thromb Haemost 120(3):400–411. https://doi.org/10.1055/s-0039-3402760

Citarella F, Wuillemin WA, Lubbers YT, Hack CE (1997) Initiation of contact system activation in plasma is dependent on factor XII autoactivation and not on enhanced susceptibility of factor XII for kallikrein cleavage. Br J Haematol 99(1):197–205. https://doi.org/10.1046/j.1365-2141.1997.3513165.x

Renne T, Schmaier AH, Nickel KF, Blomback M, Maas C (2012) In vivo roles of factor XII. Blood 120(22):4296–4303. https://doi.org/10.1182/blood-2012-07-292094

Schmaier AH (2016) The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 14(1):28–39. https://doi.org/10.1111/jth.13194

de Maat S, van Dooremalen S, de Groot PG, Maas C (2013) A nanobody-based method for tracking factor XII activation in plasma. Thromb Haemost 110(3):458–468. https://doi.org/10.1160/TH12-11-0792

Kaplan AP, Austen KF (1970) A pre-albumin activator of prekallikrein. J Immunol 105(4):802–811

Revak SD, Cochrane CG, Bouma BN, Griffin JH (1978) Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J Exp Med 147(3):719–729. https://doi.org/10.1084/jem.147.3.719

Kaplan AP, Austen KF (1971) A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med 133(4):696–712. https://doi.org/10.1084/jem.133.4.696

Dunn JT, Kaplan AP (1982) Formation and structure of human Hageman factor fragments. J Clin Invest 70(3):627–631. https://doi.org/10.1172/jci110656

Pathak M, Wilmann P, Awford J, Li C, Hamad BK, Fischer PM et al (2015) Coagulation factor XII protease domain crystal structure. J Thromb Haemost 13(4):580–591. https://doi.org/10.1111/jth.12849

Scheffel J, Mahnke NA, Hofman ZLM, Maat S, Wu J, Bonnekoh H et al (2020) Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat Commun 11(1):179. https://doi.org/10.1038/s41467-019-13984-8

Mandle R Jr, Kaplan AP (1977) Hageman factor substrates. Human plasma prekallikrein: mechanism of activation by Hageman factor and participation in hageman factor-dependent fibrinolysis. J Biol Chem 252(17):6097–104

Habal FM, Movat HZ (1976) Kininogens of human plasma. Semin Thromb Hemost 3(1):27–42. https://doi.org/10.1055/s-0028-1087163

Matheson RT, Miller DR, Lacombe MJ, Han YN, Iwanaga S, Kato H et al (1976) Flaujeac factor deficiency. Reconstitution with highly purified bovine high molecular weight-kininogen and delineation of a new permeability-enhancing peptide released by plasma kallikrein from bovine high molecular weight-kininogen. J Clin Invest 58(6):1395–406. https://doi.org/10.1172/JCI108595

Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA et al (1975) Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56(6):1650–62. https://doi.org/10.1172/JCI108247

Gigli I, Mason JW, Colman RW, Austen KF (1970) Interaction of plasma kallikrein with the C1 inhibitor. J Immunol 104(3):574–581

Forbes CD, Pensky J, Ratnoff OD (1970) Inhibition of activated Hageman factor and activated plasma thromboplastin antecedent by purified serum C1 inactivator. J Lab Clin Med 76(5):809–815

Schreiber AD, Kaplan AP, Austen KF (1973) Inhibition by C1INH of Hagemann factor fragment activation of coagulation, fibrinolysis, and kinin generation. J Clin Invest 52(6):1402–1409. https://doi.org/10.1172/JCI107313

Lewis JH, Iammarino RM, Spero JA, Hasiba U (1978) Antithrombin Pittsburgh: an alpha1-antitrypsin variant causing hemorrhagic disease. Blood 51(1):129–137

Owen MC, Brennan SO, Lewis JH, Carrell RW (1983) Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 309(12):694–8. https://doi.org/10.1056/NEJM198309223091203

de Maat S, Sanrattana W, Mailer RK, Parr NMJ, Hessing M, Koetsier RM et al (2019) Design and characterization of alpha1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 134(19):1658–1669. https://doi.org/10.1182/blood.2019000481

Meloni FJ, Gustafson EJ, Schmaier AH (1992) High molecular weight kininogen binds to platelets by its heavy and light chains and when bound has altered susceptibility to kallikrein cleavage. Blood 79(5):1233–1244

Schmaier AH, Kuo A, Lundberg D, Murray S, Cines DB (1988) The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem 263(31):16327–16333

Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP (1996) Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci USA 93(16):8552–8557. https://doi.org/10.1073/pnas.93.16.8552

Hasan AA, Zisman T, Schmaier AH (1998) Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci U S A 95(7):3615–3620. https://doi.org/10.1073/pnas.95.7.3615

Colman RW, Pixley RA, Najamunnisa S, Yan W, Wang J, Mazar A et al (1997) Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 100(6):1481–1487. https://doi.org/10.1172/JCI119669

Joseph K, Tholanikunnel BG, Ghebrehiwet B, Kaplan AP (2004) Interaction of high molecular weight kininogen binding proteins on endothelial cells. Thromb Haemost 91(1):61–70. https://doi.org/10.1160/TH03-07-0471

Reddigari SR, Shibayama Y, Brunnee T, Kaplan AP (1993) Human Hageman factor (factor XII) and high molecular weight kininogen compete for the same binding site on human umbilical vein endothelial cells. J Biol Chem 268(16):11982–11987

Joseph K, Ghebrehiwet B, Kaplan AP (1999) Cytokeratin 1 and gC1qR mediate high molecular weight kininogen binding to endothelial cells. Clin Immunol 92(3):246–255. https://doi.org/10.1006/clim.1999.4753

Reddigari SR, Kuna P, Miragliotta G, Shibayama Y, Nishikawa K, Kaplan AP (1993) Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains. Blood 81(5):1306–1311

Shariat-Madar Z, Mahdi F, Schmaier AH (1999) Mapping binding domains of kininogens on endothelial cell cytokeratin 1. J Biol Chem 274(11):7137–7145. https://doi.org/10.1074/jbc.274.11.7137

Mahdi F, Madar ZS, Figueroa CD, Schmaier AH (2002) Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 99(10):3585–3596. https://doi.org/10.1182/blood.v99.10.3585

Kaira BG, Slater A, McCrae KR, Dreveny I, Sumya U, Mutch NJ et al (2020) Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood 136(14):1685–1697. https://doi.org/10.1182/blood.2020004818

Joseph K, Ghebrehiwet B, Kaplan AP (2001) Activation of the kinin-forming cascade on the surface of endothelial cells. Biol Chem 382(1):71–75. https://doi.org/10.1515/BC.2001.012

Joseph K, Shibayama Y, Ghebrehiwet B, Kaplan AP (2001) Factor XII-dependent contact activation on endothelial cells and binding proteins gC1qR and cytokeratin 1. Thromb Haemost 85(1):119–124

Rojkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH (1998) Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 80(1):74–81

Morrison DC, Cochrane CG (1974) Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 140(3):797–811. https://doi.org/10.1084/jem.140.3.797

Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM et al (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139(6):1143–1156. https://doi.org/10.1016/j.cell.2009.11.001

Joseph K, Tholanikunnel BG, Kaplan AP (2002) Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci U S A 99(2):896–900. https://doi.org/10.1073/pnas.022626899

Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 277(20):17962–17969. https://doi.org/10.1074/jbc.M106101200

Joseph K, Tholanikunnel BG, Kaplan AP (2017) Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications for hereditary angioedema. J Allergy Clin Immunol 140(1):170–176. https://doi.org/10.1016/j.jaci.2016.09.032

Motta G, Rojkjaer R, Hasan AA, Cines DB, Schmaier AH (1998) High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation. Blood 91(2):516–528

Sawutz DG, Salvino JM, Seoane PR, Douty BD, Houck WT, Bobko MA et al (1994) Synthesis, characterization, and conformational analysis of the D/L-Tic7 stereoisomers of the bradykinin receptor antagonist D-Arg0[Hyp3, Thi5, D-Tic7, Oic8]bradykinin. Biochemistry 33(9):2373–2379. https://doi.org/10.1021/bi00175a004

Mann KG, Krishnaswamy S, Lawson JH (1992) Surface-dependent hemostasis. Semin Hematol 29(3):213–226

Kaur I, Kaur S, Vaishnavi C, Ganguly NK, Garg J, Kohli M (1991) Epidermal calmodulin levels in psoriasis before & after therapy. Indian J Med Res 94:130–133

Proctor RR, Rapaport SI (1961) The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. Am J Clin Pathol 36:212–9. https://doi.org/10.1093/ajcp/36.3.212

Kaplan AP, Joseph K (2014) Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol 121:41–89. https://doi.org/10.1016/B978-0-12-800100-4.00002-7

Wuepper KD (1973) Prekallikrein deficiency in man. J Exp Med 138(6):1345–1355. https://doi.org/10.1084/jem.138.6.1345

Weiss AS, Gallin JI, Kaplan AP (1974) Fletcher factor deficiency. A diminished rate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity, and kinin generation. J Clin Invest 53(2):622–33. https://doi.org/10.1172/JCI107597

Silverberg M, Dunn JT, Garen L, Kaplan AP (1980) Autoactivation of human Hageman factor. Demonstration utilizing a synthetic substrate. J Biol Chem 255(15):7281–6

Ivanov I, Matafonov A, Sun MF, Cheng Q, Dickeson SK, Verhamme IM et al (2017) Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood 129(11):1527–1537. https://doi.org/10.1182/blood-2016-10-744110

Goldsmith GH Jr, Saito H, Ratnoff OS (1978) The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments. J Clin Invest 62(1):54–60. https://doi.org/10.1172/JCI109113

Colman RW (1969) Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun 35(2):273–279. https://doi.org/10.1016/0006-291x(69)90278-2

Miles LA, Greengard JS, Griffin JH (1983) A comparison of the abilities of plasma kallikrein, beta-Factor XIIa, Factor XIa and urokinase to activate plasminogen. Thromb Res 29(4):407–417. https://doi.org/10.1016/0049-3848(83)90244-x

Ichinose A, Fujikawa K, Suyama T (1986) The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem 261(8):3486–3489

Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71(5):1450–1456. https://doi.org/10.1172/jci110898

Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153(3):665–676. https://doi.org/10.1084/jem.153.3.665

Asakai R, Chung DW, Davie EW, Seligsohn U (1991) Factor XI deficiency in Ashkenazi Jews in Israel. N Engl J Med 325(3):153–158. https://doi.org/10.1056/NEJM199107183250303

Naito K, Fujikawa K (1991) Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem 266(12):7353–8

Pedicord DL, Seiffert D, Blat Y (2007) Feedback activation of factor XI by thrombin does not occur in plasma. Proc Natl Acad Sci USA 104(31):12855–12860. https://doi.org/10.1073/pnas.0705566104

Cugno M, Cicardi M, Bottasso B, Coppola R, Paonessa R, Mannucci PM et al (1997) Activation of the coagulation cascade in C1-inhibitor deficiencies. Blood 89(9):3213–3218

Konings J, Cugno M, Suffritti C, Ten Cate H, Cicardi M, Govers-Riemslag JW (2013) Ongoing contact activation in patients with hereditary angioedema. PLoS ONE 8(8):e74043. https://doi.org/10.1371/journal.pone.0074043

Reshef A, Zanichelli A, Longhurst H, Relan A, Hack CE (2015) Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy 70(5):506–513. https://doi.org/10.1111/all.12587

Reshef A, Levy D, Longhurst H, Cicardi M, Craig T, Keith PK et al (2020) Effects of continuous plasma-derived subcutaneous C1-esterase inhibitor on coagulation and fibrinolytic parameters. Thromb Haemost. https://doi.org/10.1055/s-0040-1721147

Visser M, van Oerle R, Ten Cate H, Laux V, Mackman N, Heitmeier S et al (2020) Plasma kallikrein contributes to coagulation in the absence of Factor XI by activating Factor IX. Arterioscler Thromb Vasc Biol 40(1):103–111. https://doi.org/10.1161/ATVBAHA.119.313503

Noubouossie D, Henderson MW, Mooberry MJ, Ilich A, Ellsworth P, Piegore M et al (2020) Red blood cell microvesicles activate the contact system leading to Factor IX activation via two independent pathways. Blood. https://doi.org/10.1182/blood.2019001643

Puy C, Tucker EI, Wong ZC, Gailani D, Smith SA, Choi SH et al (2013) Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 11(7):1341–1352. https://doi.org/10.1111/jth.12295

Johnson DJ, Langdown J, Huntington JA (2010) Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci USA 107(2):645–50. https://doi.org/10.1073/pnas.0910144107

Conroy T, Malissard L, Dartois D, Luporsi E, Stines J, Chardot C (1988) Natural history and development of bone metastasis. Apropos of 429 cases. Bull Cancer 75(9):845–57