Blockade of B7-H1 on Macrophages Suppresses CD4+ T Cell Proliferation by Augmenting IFN-γ-Induced Nitric Oxide Production

Journal of Immunology - Tập 175 Số 3 - Trang 1586-1592 - 2005
Taiga Yamazaki1,2, Hisaya Akiba1,2, Akemi Koyanagi1,2, Miyuki Azuma1,2, Hideo Yagita1,2, Ko Okumura1,2
1Department of Immunology and Division of Cell Biology, Juntendo University School of Medicine, Tokyo, Japan
2Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan

Tóm tắt

Abstract PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC costimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-γ production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-γ mAb. Coculture of CD4+ T cells and macrophages from IFN-γ-deficient or wild-type mice showed that CD4+ T cell-derived IFN-γ was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-γ-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-γ production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-γ production by naive CD4+ T cells and, hence, NO production by macrophages.

Từ khóa


Tài liệu tham khảo

Ishida, Y., Y. Agata, K. Shibahara, T. Honjo. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11: 3887-3895.

Agata, Y., A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubata, H. Yagita, T. Honjo. 1996. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8: 765-772.

Vibhakar, R., G. Juan, F. Traganos, Z. Darzynkiewicz, L. R. Finger. 1997. Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp. Cell Res. 232: 25-28.

Nishimura, H., T. Honjo. 2001. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 22: 265-268.

Carreno, B. M., M. Collins. 2002. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20: 29-53.

Sharpe, A. H., G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126.

Nishimura, H., M. Nose, H. Hiai, N. Minato, T. Honjo. 1999. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11: 141-151.

Nishimura, H., T. Okazaki, Y. Tanaka, K. Nakatani, M. Hara, A. Matsumori, S. Sasayama, A. Mizoguchi, H. Hiai, N. Minato, et al 2001. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291: 319-322.

Dong, H., G. Zhu, K. Tamada, L. Chen. 1999. B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5: 1365-1369.

Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, et al 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192: 1027-1034.

Latchman, Y., C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. J. Long, J. A. Brown, R. Nunes, et al 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2: 261-268.

Tseng, S. Y., M. Otsuji, K. Gorski, X. Huang, J. E. Slansky, S. I. Pai, A. Shalabi, T. Shin, D. M. Pardoll, H. Tsuchiya. 2001. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193: 839-846.

Tamura, H., H. Dong, G. Zhu, G. L. Sica, D. B. Flies, K. Tamada, L. Chen. 2001. B7–H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 97: 1809-1816.

Yamazaki, T., H. Akiba, H. Iwai, H. Matsuda, M. Aoki, Y. Tanno, T. Shin, H. Tsuchiya, D. M. Pardoll, K. Okumura, et al 2002. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169: 5538-5545.

Kaneko, Y., S. Hirose, M. Abe, H. Yagita, K. Okumura, T. Shirai. 1996. CD40-mediated stimulation of B1 and B2 cells: implication in autoantibody production in murine lupus. Eur. J. Immunol. 26: 3061-3065.

Akiba, H., H. Oshima, K. Takeda, M. Atsuta, H. Nakano, A. Nakajima, C. Nohara, H. Yagita, K. Okumura. 1999. CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J. Immunol. 162: 7058-7066.

Albina, J. E., J. A. Abate, W. L. Henry, Jr. 1991. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation: role of IFN-γ in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 147: 144-148.

Warner, L. A., P. G. Holt, G. Mayrhofer. 1981. Alveolar macrophages. VI. Regulation of alveolar macrophage-mediated suppression of lymphocyte proliferation by a putative T cell. Immunology 42: 137-147.

Upham, J. W., D. H. Strickland, N. Bilyk, B. W. Robinson, P. G. Holt. 1995. Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology 84: 142-147.

Munn, D. H., M. Zhou, J. T. Attwood, I. Bondarev, S. J. Conway, B. Marshall, C. Brown, A. L. Mellor. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281: 1191-1193.

Munn, D. H., E. Shafizadeh, J. T. Attwood, I. Bondarev, A. Pashine, A. L. Mellor. 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189: 1363-1372.

Mellor, A. L., J. Sivakumar, P. Chandler, K. Smith, H. Molina, D. Mao, D. H. Munn. 2001. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat. Immunol. 2: 64-68.

Munn, D. H., M. D. Sharma, J. R. Lee, K. G. Jhaver, T. S. Johnson, D. B. Keskin, B. Marshall, P. Chandler, S. J. Antonia, R. Burgess, et al 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297: 1867-1870.

Chemnitz, J. M., R. V. Parry, K. E. Nichols, C. H. June, J. L. Riley. 2004. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173: 945954.

Latchman, Y. E., S. C. Liang, Y. Wu, T. Chernova, R. A. Sobel, M. Klemm, V. K. Kuchroo, G. J. Freeman, A. H. Sharpe. 2004. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. USA 101: 10691-10696.

Strickland, D. H., U. R. Kees, P. G. Holt. 1994. Suppression of T-cell activation by pulmonary alveolar macrophages: dissociation of effects on TcR, IL-2R expression, and proliferation. Eur. Respir. J. 7: 2124-2130.

Bingisser, R. M., P. A. Tilbrook, P. G. Holt, U. R. Kees. 1998. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160: 5729-5734.

Strickland, D., U. R. Kees, P. G. Holt. 1996. Regulation of T-cell activation in the lung: alveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology 87: 250-258.

MacMicking, J., Q. W. Xie, C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350.

Grabowski, P. S., A. J. England, R. Dykhuizen, M. Copland, N. Benjamin, D. M. Reid, S. H. Ralston. 1996. Elevated nitric oxide production in rheumatoid arthritis: detection using the fasting urinary nitrate:creatinine ratio. Arthritis Rheum. 39: 643-647.

Stefanovic-Racic, M., J. Stadler, C. H. Evans. 1993. Nitric oxide and arthritis. Arthritis Rheum. 36: 1036-1044.

Hukkanen, M., S. A. Corbett, L. A. Platts, Y. T. Konttinen, S. Santavirta, S. P. Hughes, J. M. Polak. 1998. Nitric oxide in the local host reaction to total hip replacement. Clin. Orthop. Relat. Res. 352: 53-65.

Willenborg, D. O., M. A. Staykova, W. B. Cowden. 1999. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review. J. Neuroimmunol. 100: 21-35.

Lew, W., E. Lee, J. G. Krueger. 2004. Psoriasis genomics: analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris. Br. J. Dermatol. 150: 668-676.

Kolb, H., V. Burkart, B. Appels, H. Hanenberg, G. Kantwerk-Funke, U. Kiesel, J. Funda, U. Schraermeyer, V. Kolb-Bachofen. 1990. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J. Autoimmun. 3:(Suppl. 1): 117-120.

Hutchings, P., H. Rosen, L. O’Reilly, E. Simpson, S. Gordon, A. Cooke. 1990. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 348: 639-642.

Southern, C., D. Schulster, I. C. Green. 1990. Inhibition of insulin secretion by interleukin-1β and tumour necrosis factor-α via an l-arginine-dependent nitric oxide generating mechanism. FEBS Lett. 276: 42-44.

Welsh, N., D. L. Eizirik, K. Bendtzen, S. Sandler. 1991. Interleukin-1β-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129: 3167-3173.

Corbett, J. A., J. R. Lancaster, Jr, M. A. Sweetland, M. L. McDaniel. 1991. Interleukin-1β-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans: role of nitric oxide in interleukin-1β-induced inhibition of insulin secretion. J. Biol. Chem. 266: 21351-21354.

Heitmeier, M. R., A. L. Scarim, J. A. Corbett. 1999. Double-stranded RNA inhibits β-cell function and induces islet damage by stimulating β-cell production of nitric oxide. J. Biol. Chem. 274: 12531-12536.

Liu, D., M. Darville, D. L. Eizirik. 2001. Double-stranded ribonucleic acid (RNA) induces β-cell Fas messenger RNA expression and increases cytokine-induced β-cell apoptosis. Endocrinology 142: 2593-2599.

Tsushima, F., H. Iwai, N. Otsuki, M. Abe, S. Hirose, T. Yamazaki, H. Akiba, H. Yagita, Y. Takahashi, K. Omura, et al 2003. Preferential contribution of B7–H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur. J. Immunol. 33: 2773-2782.

Ansari, M. J., A. D. Salama, T. Chitnis, R. N. Smith, H. Yagita, H. Akiba, T. Yamazaki, M. Azuma, H. Iwai, S. J. Khoury, et al 2003. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198: 63-69.

Hoffman, R. A., J. M. Langrehr, T. R. Billiar, R. D. Curran, R. L. Simmons. 1990. Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J. Immunol. 145: 2220-2226.

Albina, J. E., W. L. Henry, Jr. 1991. Suppression of lymphocyte proliferation through the nitric oxide synthesizing pathway. J. Surg. Res. 50: 403-409.

Wei, X. Q., I. G. Charles, A. Smith, J. Ure, G. J. Feng, F. P. Huang, D. Xu, W. Muller, S. Moncada, F. Y. Liew. 1995. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375: 408-411.

Allione, A., P. Bernabei, M. Bosticardo, S. Ariotti, G. Forni, F. Novelli. 1999. Nitric oxide suppresses human T lymphocyte proliferation through IFN-γ-dependent and IFN-γ-independent induction of apoptosis. J. Immunol. 163: 418-4191.

van der Veen, R. C., T. A. Dietlin, J. Dixon Gray, W. Gilmore. 2000. Macrophage-derived nitric oxide inhibits the proliferation of activated T helper cells and is induced during antigenic stimulation of resting T cells. Cell. Immunol. 199: 43-49.

van der Veen, R. C., T. A. Dietlin, L. Pen, J. D. Gray. 1999. Nitric oxide inhibits the proliferation of T-helper 1 and 2 lymphocytes without reduction in cytokine secretion. Cell. Immunol. 193: 194-201.

Sternberg, J., F. McGuigan. 1992. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Eur. J. Immunol. 22: 2741-2744.

Kahl, K. G., H. H. Schmidt, S. Jung, P. Sherman, K. V. Toyka, J. Zielasek. 2004. Experimental autoimmune encephalomyelitis in mice with a targeted deletion of the inducible nitric oxide synthase gene: increased T-helper 1 response. Neurosci. Lett. 358: 58-62.

Fenyk-Melody, J. E., A. E. Garrison, S. R. Brunnert, J. R. Weidner, F. Shen, B. A. Shelton, J. S. Mudgett. 1998. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J. Immunol. 160: 2940-2946.

Gabbai, F. B., C. Boggiano, T. Peter, S. Khang, C. Archer, D. P. Gold, C. J. Kelly. 1997. Inhibition of inducible nitric oxide synthase intensifies injury and functional deterioration in autoimmune interstitial nephritis. J. Immunol. 159: 626-6275.