Block2vec: An Approach for Identifying Urban Functional Regions by Integrating Sentence Embedding Model and Points of Interest
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhong, 2014, Inferring building functions from a probabilistic model using public transportation data, Comput. Environ. Urban Syst., 48, 124, 10.1016/j.compenvurbsys.2014.07.004
Gao, 2017, Extracting urban functional regions from points of interest and human activities on location-based social networks, Trans. GIS, 21, 446, 10.1111/tgis.12289
Jin, 2017, Evaluating cities’ vitality and identifying ghost cities in China with emerging geographical data, Cities, 63, 98, 10.1016/j.cities.2017.01.002
Yue, 2017, Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy, Int. J. Geogr. Inf. Sci., 31, 658, 10.1080/13658816.2016.1220561
Forghani, 2018, Interplay between urban communities and human-crowd mobility: A study using contributed geospatial data sources, Trans. GIS, 22, 1008, 10.1111/tgis.12465
Yue, 2018, Understanding the interplay between bus, metro, and cab ridership dynamics in Shenzhen, China, Trans. GIS, 22, 855, 10.1111/tgis.12340
Zhang, 2017, The impact of land-use mix on residents’ travel energy consumption: New evidence from Beijing, Transp. Res. Part D Transp. Environ., 57, 224, 10.1016/j.trd.2017.09.020
Zhai, 2019, Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs, Comput. Environ. Urban Syst., 74, 1, 10.1016/j.compenvurbsys.2018.11.008
Yuan, J., Zheng, Y., and Xie, X. (2012, January 12–16). Discovering regions of different functions in a city using human mobility and POIs. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’12, Beijing, China.
Yao, 2017, Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model, Int. J. Geogr. Inf. Sci., 31, 825, 10.1080/13658816.2016.1244608
Maat, 2005, Land use and travel behaviour: Expected effects from the perspective of utility theory and activity-based theories, Environ. Plan. B Plan. Des., 32, 33, 10.1068/b31106
Ellis, E., and Pontius, R. (2016, September 30). Land-Use and Land-Cover Change. The Encyclopedia of Earth. Available online: https://ecotope.org/people/ellis/papers/ellis_eoe_lulcc_2007.pdf.
Privitera, 2013, Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts, Landsc. Urban Plan., 109, 94, 10.1016/j.landurbplan.2012.05.012
Han, 2017, Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery, Int. J. Remote Sens., 38, 514, 10.1080/01431161.2016.1266059
Zhong, 2017, SatCNN: Satellite image dataset classification using agile convolutional neural networks, Remote Sens. Lett., 8, 136, 10.1080/2150704X.2016.1235299
Tao, 2015, Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification, IEEE Geosci. Remote Sens. Lett., 12, 2438, 10.1109/LGRS.2015.2482520
Li, J., Huang, X., and Zhang, L. (2016, January 10–15). Semi-supervised sparse relearning representation classification for high-resolution remote sensing imagery. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.
Mohammadimanesh, 2019, A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem, ISPRS J. Photogramm. Remote Sens., 151, 223, 10.1016/j.isprsjprs.2019.03.015
Li, Y., Chen, Y., Liu, G., and Jiao, L. (2018). A novel deep fully convolutional network for PolSAR image classification. Remote Sens., 10.
Tao, C., Chen, S., Li, Y., and Xiao, S. (2017). PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain. Remote Sens., 9.
Tu, 2017, Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns, Int. J. Geogr. Inf. Sci., 30, 2331, 10.1080/13658816.2017.1356464
Liu, 2015, Social sensing: A new approach to understanding our socioeconomic environments, Ann. Assoc. Am. Geogr., 105, 512, 10.1080/00045608.2015.1018773
Pei, 2014, A new insight into land use classification based on aggregated mobile phone data, Int. J. Geogr. Inf. Sci., 28, 1988, 10.1080/13658816.2014.913794
Jia, Y., Ge, Y., Ling, F., Guo, X., Wang, J., Wang, L., Chen, Y., and Li, X. (2018). Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sens., 10.
Liu, 2017, Classifying urban land use by integrating remote sensing and social media data, Int. J. Geogr. Inf. Sci., 31, 1675, 10.1080/13658816.2017.1324976
Toole, J.L., Ulm, M., González, M.C., and Bauer, D. (2012, January 12). Inferring land use from mobile phone activity. Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China.
2017, Land Use detection with cell phone data using topic models: Case Santiago, Chile, Comput. Environ. Urban Syst., 61, 39, 10.1016/j.compenvurbsys.2016.08.007
Tu, W., Hu, Z., Li, L., Cao, J., Jiang, J., Li, Q., and Li, Q. (2018). Portraying urban functional zones by coupling remote sensing imagery and human sensing data. Remote Sens., 10.
Mao, 2017, Improving land use inference by factorizing mobile phone call activity matrix, J. Land Use Sci., 12, 138, 10.1080/1747423X.2017.1303546
Caceres, 2018, Supervised land use inference from mobility patterns, J. Adv. Transp., 2018, 8710402, 10.1155/2018/8710402
Pan, 2013, Land-use classification using taxi GPS traces, IEEE Trans. Intell. Transp. Syst., 14, 113, 10.1109/TITS.2012.2209201
Liu, 2016, Incorporating spatial interaction patterns in classifying and understanding urban land use, Int. J. Geogr. Inf. Sci., 30, 334, 10.1080/13658816.2015.1086923
Wang, Y., Gu, Y., Dou, M., and Qiao, M. (2018). Using spatial semantics and interactions to identify urban functional regions. ISPRS Int. J. Geo Inf., 7.
Long, 2015, Discovering functional zones using bus smart card data and points of interest in Beijing, Geospatial Analysis to Support Urban Planning in Beijing, Volume 116, 193, 10.1007/978-3-319-19342-7_10
2014, Spectral clustering for sensing urban land use using Twitter activity, Eng. Appl. Artif. Intell., 35, 237, 10.1016/j.engappai.2014.06.019
Zhang, 2019, Functional urban land use recognition integrating multi-source geospatial data and cross-correlations, Comput. Environ. Urban Syst., 78, 101374, 10.1016/j.compenvurbsys.2019.101374
Jiang, 2015, Mining point-of-interest data from social networks for urban land use classification and disaggregation, Comput. Environ. Urban Syst., 53, 36, 10.1016/j.compenvurbsys.2014.12.001
Liu, 2016, Automated identification and characterization of parcels with OpenStreetMap and points of interest, Environ. Plan. B Plan. Des., 43, 341, 10.1177/0265813515604767
Yu, 2014, Urban computing: Concepts, methodologies, and applications, ACM Trans. Intell. Syst. Technol., 5, 1, 10.1145/2629592
Yuan, 2015, Discovering urban functional zones using latent activity trajectories, IEEE Trans. Knowl. Data Eng., 27, 712, 10.1109/TKDE.2014.2345405
Chen, 2017, Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method, Landsc. Urban Plan., 160, 48, 10.1016/j.landurbplan.2016.12.001
Yan, B., Mai, G., Janowicz, K., and Gao, S. (2017, January 7–10). From ITDL to Place2Vec—Reasoning about place type similarity and relatedness by learning embeddings from augmented spatial contexts. Proceedings of the GIS ACM International Symposium on Advances in Geographic Information Systems, Redondo Beach, CA, USA.
Yao, 2017, Sensing urban land-use patterns by integrating Google Tensorflow and scene-classification models, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7, 981, 10.5194/isprs-archives-XLII-2-W7-981-2017
Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Torralba, A., Urtasun, R., and Fidler, S. (2014, January 8–13). Skip-thought vectors. Proceedings of the NIPS’15: 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada.
Sutskever, I., Vinyals, O., and Le, Q.V. (2014, January 8–13). Sequence to sequence learning with neural networks. Proceedings of the NIPS’15: 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada.
Sundermeyer, M., Schlüter, R., and Ney, H. (2012, January 9–13). LSTM neural networks for language modeling. Proceedings of the 13th Annual Conference of the International Speech Communication Association, INTERSPEECH 2012, Portland, OR, USA.
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014, January 25–29). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the EMNLP 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar.
Wang, 2020, SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction, ACM Trans. Spat. Algorithms Syst., 6, 22
Rousseeuw, 1987, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53, 10.1016/0377-0427(87)90125-7
Biau, 2012, Analysis of a random forests model, J. Mach. Learn. Res., 13, 1063
Datcu, 2010, Semantic annotation of satellite images using latent dirichlet allocation, IEEE Geosci. Remote Sens. Lett., 7, 28, 10.1109/LGRS.2009.2023536