Blended waste utilization in road construction: physical characteristics of bitumen modified with waste cooking oil and high-density polyethylene
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y. Becker, M.P. Méndez, Y. Rodriguez, Polymer Modified Asphalt, Vis. Technol. 9 (2001) 39–50.
M. Garcia-Morales, P. Partal, F.J. Navarro, C. Gallegos, Effect of waste polymer addition on the rheology of modified bitumen, Fuel 85 (7–8) (2006) 936–943. https://doi.org/10.1016/j.fuel.2005.09.015.
M. Attaelmanan, C. Pei, A. Ai, Laboratory evaluation of HMA with high-density polyethylene as a modifier, Constr. Build. Mater. 25 (5) (2011) 2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037.
M.C. Math, S. Prem, S. V Chetty, Energy for Sustainable Development Technologies for biodiesel production from used cooking oil — A review, Energy Sustain. Dev. 14 (4) (2010) 339–345. https://doi.org/10.1016/j.esd.2010.08.001.
A. Guarin, A. Khan, A. Azhar, B. Birgisson, N. Kringos, An extensive laboratory investigation of the use of bio-oil modified bitumen in road construction, Constr. Build. Mater. 106 (2016) 133–139. https://doi.org/10.1016/j.conbuildmat.2015.12.009.
A.A. Al-Omari, T.S. Khedaywi, M.A. Khasawneh, Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications, Int. J. Pavement Res. Technol. 11 (1) (2018) 68–76. https://doi.org/10.1016/j.ijprt.2017.09.004.
M. Chen, B. Leng, S. Wu, Y. Sang, Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders, Constr. Build. Mater. 66 (2014) 286–298. https://doi.org/10.1016/j.conbuildmat.2014.05.033.
Z. Sun, J. Yi, Y. Huang, D. Feng, C. Guo, Properties of asphalt binder modified by bio-oil derived from waste cooking oil, Constr. Build. Mater. 102 (2016) 496–504. https://doi.org/10.1016/j.conbuildmat.2015.10.173.
H. Asli, E. Ahmadinia, M. Zargar, M.R. Karim, Investigation on physical properties of waste cooking oil — Rejuvenated bitumen binder, Constr. Build. Mater. 37 (2012) 398–405. https://doi.org/10.1016/j.conbuildmat.2012.07.042.
J. Peralta, R.C. Williams, M. Rover, Silva, Development of Rubber-Modified Fractionated Bio-Oil for Use as Noncrude Petroleum Binder in Flexible Pavements, Transp. Res. Circ. E-C165 Altern. Bind. (2012) 23–36.
H. Wen, S. Bhusal, B. Wen, Laboratory Evaluation of Waste Cooking Oil-Based Bioasphalt as an Alternative Binder for Hot Mix Asphalt, J. Mater. Civ. Eng. 25 (10) (2013) 1432–1437. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000713.
N.W.A. Wan Azahar, R. Putra, M. Rosli, M. Bujang, N. Ngadi, Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder, Constr. Build. Mater. 126 (2016) 218–226. https://doi.org/10.1016/j.conbuildmat.2016.09.032.
O. Qualities, R.A. Properties, Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties, Mater. 10 (5) (2017) 508. https://doi.org/10.3390/ma10050508.
X. Leong, C. Ng, K. Jaarin, M. Mustafa, Effects of Repeated Heating of Cooking Oils on Antioxidant Content and Endothelial Function, Austin J. Pharmacol. Ther. 3 (2) (2015) 1068.
C. Xinxin, C. Xuejuan, T. Boming, W. Yuanyuan, L. Xiaolong, Investigation on Possibility of Waste Vegetable Oil Rejuvenating Aged Asphalt, Appl. Sci. 8 (5) (2018) 765. https://doi.org/10.3390/app8050765.
M. Zargar, E. Ahmadinia, H. Asli, M.R. Karim, Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen, J. Hazard. Mater. 233–234 (2012) 254–258. https://doi.org/10.1016/j.jhazmat.2012.06.021.
L.P.F. Abreu, J.R.M. Oliveira, H.M.R.D. Silva, P. V Fonseca, Recycled asphalt mixtures produced with high percentage of different waste materials, Constr. Build. Mater. 84 (2015) 230–238. https://doi.org/10.1016/j.conbuildmat.2015.03.063.
A.I. Al-Hadidy, T. Yi-qiu, Effect of polyethylene on life of flexible pavements, Constr. Build. Mater. 23 (2009) 1456–1464. https://doi.org/10.1016/j.conbuildmat.2008.07.004.
G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, L. Zanzotto, Asphalt modification with different polyethylene-based polymers, Eur. Polym. J. 41 (12) (2005) 2831–2844. https://doi.org/10.1016/j.eurpolyrnj.2005.05.034.
S. Hinislioglu, E. Agar, Use of waste high-density polyethylene as bitumen modifier in asphalt concrete mix, Mater. Lett. 58 (3–4) (2004) 267–271. https://doi.org/10.1016/S0167-577X(03)00458-0.
F.M. Nejad, A. Azarhoosh, G.H. Hamedi, Effect of high-density polyethylene on the fatigue and rutting performance of hot mix asphalt — a laboratory study, Road Mater. Pavement Des. 15 (3) (2014) 746–756. https://doi.org/10.1080/14680629.2013.876443.
H.A.A. Gibreil, C.P. Feng, Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt, Constr. Build. Mater. 142 (2017) 101–108. https://doi.org/10.1016/j.conbuildmat.2017.03.062.
A. Perez-Lepe, F.J. Martinez-Boza, C. Gallegos, Influence of Polymer Concentration on the Microstructure and Rheological Properties of High-Density Polyethylene (HDPE)-Modified Bitumen, Energy and Fuels 19 (2005) 1148–1152. https://doi.org/10.1021/ef0497513.
Sevil Kofteci, Effect of HDPE Based Wastes on the Performance of Modified Asphalt Mixtures, in: World Multidiscip. Civ. Eng. Archit. Plan. Symp. 2016, Proc. Eng. 161 (2016) 1268–1274. https://doi.org/10.1016/j.proeng.2016.08.567.
F.L. Roberts, P.S. Kandhal, E.R. Brown, D.Y. Lee, T.W. Kennedy, Hot Mix Asphalt Materials, Mixture Design, and Construction, National Asphalt Pavement Association Education Foundation, Lanham, MD., 1996.
J. Su, J. Qiu, E. Schlangen, Y. Wang, Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ rejuvenation for aged bitumen, Constr. Build. Mater. 74 (2015) 83–92. https://doi.org/10.1016/j.conbuildmat.2014.10.018.