Blebs lead the way: how to migrate without lamellipodia
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 2008).
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
Robertson, A. M., Bird, C. C., Waddell, A. W. & Currie, A. R. Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells. J. Pathol. 126, 181–187 (1978).
Trinkaus, J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev. Biol. 30, 69–103 (1973).
Blaser, H. et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11, 613–627 (2006).
Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).
Yoshida, K. & Soldati, T. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 119, 3833–3844 (2006).
Fackler, O. T. & Grosse, R. Cell motility through plasma membrane blebbing. J. Cell Biol. 181, 879–884 (2008).
Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).
Pinner, S. & Sahai, E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nature Cell Biol. 10, 127–137 (2008).
Holtfreter, J. Properties and functions of the surface coat in amphibian embryos. J. Exp. Zool. 93, 251–323 (1943).
Wourms, J. P. The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomers during the development of annual fish eggs. J. Exp. Zool. 182, 169–200 (1972).
Kageyama, T. Motility and locomotion of embryonic cells of the medaka, Oryzias latipes, during early development. Dev. Growth Differ. 19, 103–110 (1977).
Concha, M. L. & Adams, R. J. Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125, 983–994 (1998).
Fink, R. D. & Trinkaus, J. P. Fundulus deep cells: directional migration in response to epithelial wounding. Dev. Biol. 129, 179–190 (1988).
Kubota, H. Y. Creeping locomotion of the endodermal cells dissociated from gastrulae of the Japanese newt, Cynops pyrrhogaster. Exp. Cell Res. 133, 137–148 (1981).
Satoh, N., Kageyama, T. & Sirakami, K. T. Motility of dissociated embryonic cells in Xenopus laevis: its significance to morphogenetic movements. Dev. Growth Diff. 18, 55–67 (1976).
Jaglarz, M. K. & Howard, K. R. The active migration of Drosophila primordial germ cells. Development 121, 3495–3503 (1995).
Mast, S. O. Structure, movement, locomotion, and stimulation of amoeba. J. Morphol. Physiol. 41, 347–425 (1926).
Yanai, M., Kenyon, C. M., Butler, J. P., Macklem, P. T. & Kelly, S. M. Intracellular pressure is a motive force for cell motion in Amoeba proteus. Cell. Motil. Cytoskeleton 33, 22–29 (1996).
Stockem, W., Hoffmann, H. U. & Gawlitta, W. Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus. Cell Tissue Res. 221, 505–519 (1982).
Langridge, P. D. & Kay, R. R. Blebbing of Dictyostelium cells in response to chemoattractant. Exp. Cell Res. 312, 2009–2017 (2006).
Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).
Voura, E. B., Sandig, M. & Siu, C. H. Cell–cell interactions during transendothelial migration of tumor cells. Microsc. Res. Tech. 43, 265–275 (1998).
Haston, W. S. & Shields, J. M. Contraction waves in lymphocyte locomotion. J. Cell Sci. 68, 227–241 (1984).
Keller, H. & Eggli, P. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell. Motil. Cytoskeleton 41, 181–193 (1998).
Keller, H., Rentsch, P. & Hagmann, J. Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp. Cell Res. 277, 161–172 (2002).
Sroka, J., von Gunten, M., Dunn, G. A. & Keller, H. U. Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int. J. Biochem. Cell Biol. 34, 882–899 (2002).
Fink, R. D. In vivo cytoskeletal dynamics of living fish embryos. Movie #2: deep cell circus movements: actin dynamics. Mount Holyoke College [ online ], (2003).
Charras, G. T. A short history of blebbing. J. Microsc. (in the press).
Cunningham, C. C. Actin polymerization and intracellular solvent flow in cell surface blebbing. J. Cell Biol. 129, 1589–1599 (1995).
Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005).
Paluch, E., van der Gucht, J. & Sykes, C. Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 175, 687–692 (2006).
Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001).
Mills, J. C., Stone, N. L. & Pittman, R. N. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J. Cell Biol. 146, 703–708 (1999).
Tournaviti, S. et al. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J. Cell Sci. 120, 3820–3829 (2007).
Gutjahr, M. C., Rossy, J. & Niggli, V. Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp. Cell Res. 308, 422–438 (2005).
Fujinami, N. Studies on the mechanism of circus movement in dissociated embryonic cells of a teleost, Oryzias latipes: fine-structural observations. J. Cell Sci. 22, 133–147 (1976).
Tickle, C. & Trinkaus, J. P. Some clues as to the formation of protrusions by Fundulus deep cells. J. Cell Sci. 26, 139–150 (1977).
Fedier, A., Eggli, P. & Keller, H. U. Redistribution of surface-bound con A is quantitatively related to the movement of cells developing polarity. Cell. Motil. Cytoskeleton 44, 44–57 (1999).
Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006).
Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).
Decave, E. et al. Shear flow-induced motility of Dictyostelium discoideum cells on solid substrate. J. Cell Sci. 116, 4331–4343 (2003).
Rossy, J., Gutjahr, M. C., Blaser, N., Schlicht, D. & Niggli, V. Ezrin/moesin in motile Walker 256 carcinosarcoma cells: signal-dependent relocalization and role in migration. Exp. Cell Res. 313, 1106–1120 (2007).
Paluch, E., Sykes, C., Prost, J. & Bornens, M. Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol. 16, 5–10 (2006).
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).
Mitchison, T. J., Charras, G. T. & Mahadevan, L. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin. Cell Dev. Biol. 19, 215–223 (2008).
Grebecki, A., Grebecka, L. & Wasik, A. Minipodia and rosette contacts are adhesive organelles present in free-living amoebae. Cell Biol. Int. 25, 1279–1283 (2001).
Trinkaus, J. P. & Lentz, T. L. Surface specializations of Fundulus cells and their relation to cell movements during gastrulation. J. Cell Biol. 32, 139–153 (1967).
Blaser, H. et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118, 4027–4038 (2005).
Malawista, S. E., de Boisfleury Chevance, A. & Boxer, L. A. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with leukocyte adhesion deficiency-1: normal displacement in close quarters via chimneying. Cell. Motil. Cytoskeleton 46, 183–189 (2000).
Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).
Bereiter-Hahn, J., Luck, M., Miebach, T., Stelzer, H. K. & Voth, M. Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J. Cell Sci. 96, 171–188 (1990).
Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).
Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007).
Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).
Mills, J. C., Stone, N. L., Erhardt, J. & Pittman, R. N. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140, 627–636 (1998).
Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001).
Sebbagh, M., Hamelin, J., Bertoglio, J., Solary, E. & Breard, J. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J. Exp. Med. 201, 465–471 (2005).
Segundo, C. et al. Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Blood 94, 1012–1020 (1999).
Barros, L. F. et al. Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ. 10, 687–697 (2003).
Fishkind, D. J., Cao, L. G. & Wang, Y. L. Microinjection of the catalytic fragment of myosin light chain kinase into dividing cells: effects on mitosis and cytokinesis. J. Cell Biol. 114, 967–975 (1991).
Hickson, G. R., Echard, A. & O'Farrell, P. H. Rho-kinase controls cell shape changes during cytokinesis. Curr. Biol. 16, 359–370 (2006).
Tokumitsu, T. & Maramorosch, K. Cytoplasmic protrusions in insect cells during mitosis in vitro. J. Cell Biol. 34, 677–683 (1967).
Strangeways, T. Observations on the changes seen in living cells during growth and division. Proc. R. Soc. Lond., B, Biol. Sci. 94, 137–141 (1922).
Erickson, C. A. & Trinkaus, J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp. Cell Res. 99, 375–384 (1976).