Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian‐Turonian Oceanic Anoxic Event

Paleoceanography - Tập 26 Số 3 - 2011
Ian Jarvis1, John Lignum1,2, Darren R. Gröcke3, Hugh C. Jenkyns4, Martin A. Pearce5
1Centre for Earth and Environmental Science Research, School of Geography, Geology and the Environment, Kingston University London, Kingston upon Thames, UK
2Ichron Limited, Northwich, UK
3 Department of Earth Sciences, Durham University, Durham, UK
4Department of Earth Sciences, University of Oxford, Oxford, UK
5Statoil Gulf Services LLC, Houston, Texas, USA

Tóm tắt

Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian‐Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The δ13Ccarb, δ13Corg, and δ18O chemostratigraphy of a black shale–bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto‐North Atlantic, and the U.S. Western Interior Seaway (WIS). Δ13C (offset between δ13Ccarb and δ13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker δ13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk δ18O records show sea surface temperature (SST) changes that closely follow the Δ13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (∼25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ∼40 kyr. Renewed increases in pCO2, SST, and δ13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.

Từ khóa


Tài liệu tham khảo

10.1038/ngeo743

Anderson T. F., 1983, Stable Isotopes in Sedimentary Geology, 1

10.1038/315216a0

10.1029/GM032p0504

Arthur M. A., 1987, Marine Petroleum Source Rocks, 401

10.1038/335714a0

10.1038/ngeo757

10.1016/0012‐8252(83)90001‐6

10.1016/j.gca.2005.11.032

10.1029/2005PA001203

10.1130/0091‐7613(1999)027<0699:NOIEFL>2.3.CO;2

10.1016/S0016‐6995(89)80056‐7

Crumière J. P.(1991) Les potentialités petroligènes des dépôts du Bassin Vocontien oriental (sud‐est France) au Cenomanien‐Turonien inférieur. Dynamiques de la sédimentation de la préservation et de l'évolution de la matière organique Ph.D. thesis 78pp Univ. Claude‐Bernard Lyon I Lyon France.

Crumière J. P., 1990, Deposition of Organic Facies, 107

10.1016/0025‐3227(86)90092‐7

10.1016/j.geobios.2009.11.003

10.1038/ngeo.2007.29

10.1029/2006PA001349

10.1016/j.palaeo.2008.07.006

10.1029/92GB00190

10.1016/j.revmic.2006.04.003

10.1038/ngeo217

10.1016/j.palaeo.2008.01.003

Gale A. S., 1996, Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance, Bull. Geol. Soc. Den., 43, 68

10.1016/j.cretres.2005.01.006

10.1098/rsta.2001.0965

10.1016/j.cretres.2006.03.005

10.1016/S0031‐0182(96)00129‐0

10.1016/S0031‐0182(02)00634‐X

10.1130/0016‐7606(1995)107<1164:MLCCOT>2.3.CO;2

10.1130/0091‐7613(2002)030<0123:DSPROE>2.0.CO;2

Jarvis I., 2003, Handbook of Inductively Coupled Plasma Mass Spectrometry, 172

10.1016/0195‐6671(88)90003‐1

10.1017/S0016756806002421

Jefferies R. P. S., 1962, The palaeoecology of the Actinocamax plenus subzone (lowest Turonian) in the Anglo‐Paris Basin, Palaeontology, 4, 609

10.1029/2009GC002788

10.1017/S0016756800010451

10.1029/2006PA001355

10.1016/j.marmicro.2003.08.004

10.1016/j.gca.2007.12.010

10.1016/j.gca.2010.05.027

Kuhnt W., 1986, Biogeochemistry of Black Shales, 205

10.1016/S0009‐2541(99)00086‐8

10.1016/j.epsl.2007.01.027

10.1038/20659

10.1029/2000PA000569

10.1016/j.epsl.2004.09.037

10.1130/0091‐7613(1991)019<0963:GCOS>2.3.CO;2

10.1016/0016‐7037(95)00030‐4

10.2110/csp.98.06.0101

Lignum J.(2009) Cenomanian (Upper Cretaceous) palynology and chemostratigraphy: Dinoflagellate cysts as indicators of palaeoenvironmental and sea‐level change Ph.D. thesis 582 pp. Kingston Univ. London Kingston upon Thames U. K.

10.1016/j.revpalbo.2007.11.004

10.1126/science.1166368

10.1146/annurev.earth.36.031207.124256

Morel L.(1998) Stratigraphie à haute resolution du passage Cénomanien‐Turonien Ph.D. thesis 224 pp. Univ. de Paris VI Pierre et Marie Curie Paris.

10.1130/G23475A.1

Ogg J. G., 2008, The Concise Geologic Time Scale

10.1016/S0031‐0182(99)00009‐7

10.1016/j.palaeo.2009.06.012

Philip J., 2000, Atlas Peri‐Tethys Palaeogeographical Maps

10.1016/S0031‐0182(00)00219‐4

10.1130/1052‐5173(2004)014<4:CAAPDO>2.0.CO;2

10.1130/G22074.1

Schlanger S. O., 1976, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179

Schlanger S. O., 1987, Marine Petroleum Source Rocks, 371

Scholle P. A., 1980, Carbon isotope fluctuation in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, AAPG Bull., 64, 67

10.1016/S0012‐821X(02)00979‐2

10.1130/G19876.1

10.1016/j.palaeo.2008.04.022

10.1130/G25624A.1

Shackleton N. J. andJ. P.Kennett(1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277 279 and 281 edited byJ. P.Kennettet al. Initial Rep. Deep Sea Drill. Proj. 29 743–755.

Shipboard Scientific Party(2004) Site 1276 in Drilling the Newfoundland Half of the Newfoundland‐Iberia Transect: The First Conjugate Margin Drilling in a Nonvolcanic Rift Sites 1276 and 1277 edited byB. E.Tucholke J.‐C.Sibuet andA.Klaus Proc. Ocean Drill. Program Initial Rep. 210 doi:10.2973/odp.proc.ir.210.103.2004.

10.1016/S0012‐821X(98)00052‐1

10.1016/j.orggeochem.2008.01.012

10.1016/j.epsl.2010.02.027

10.2113/gsecongeo.92.7‐8.836

10.1029/2004PA001093

10.1016/j.palaeo.2008.12.001

10.1016/j.epsl.2009.06.016

10.1144/0016‐764903‐077

10.1038/nature07076

10.1016/j.palaeo.2009.07.003

10.1029/2004PA001015

10.1016/j.cretres.2006.04.005

10.1016/j.epsl.2006.10.026

10.1127/0078‐0421/2008/0043‐0065

10.1127/0078‐0421/2010/0004

10.1016/0079-1946(71)90020-6

10.1006/cres.1997.0062

10.1029/93PA03266