Black phosphorus field-effect transistors

Nature Nanotechnology - Tập 9 Số 5 - Trang 372-377 - 2014
Likai Li1, Yijun Yu1, Guo Jun Ye2, Q. Q. Ge1, Xuedong Ou1, Hua Wu1, Donglai Feng1, Xianhui Chen2, Yuanbo Zhang1
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Delhaès, P. Graphite and Precursors (Gordon & Breach Science, 2001).

Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).

Slater, J. C., Koster, G. F. & Wood, J. H. Symmetry and free electron properties of the gallium energy bands. Phys. Rev. 126, 1307–1317 (1962).

Cartz, L., Srinivasa, S. R., Riedner, R. J., Jorgensen, J. D. & Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979).

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

Takao, Y. & Morita, A. Electronic structure of black phosphorus: tight binding approach. Physica B&C 105, 93–98 (1981).

Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963).

Maruyama, Y., Suzuki, S., Kobayashi, K. & Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica B&C 105, 99–102 (1981).

Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983).

Rodin, A. S., Carvalho, A. & Neto, A. H. C. Strain-induced gap modification in black phosphorus. Preprint at http://arxiv.org/abs/1401.1801 (2014).

Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn 51, 1193–1199 (1982).

Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 139, 1291–1292 (1963).

Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599 (1989).

Kawamura, H., Shirotani, I. & Tachikawa, K. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49, 879–881 (1984).

Wittig, J. & Matthias, B. T. Superconducting phosphorus. Science 160, 994–995 (1968).

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005).

Marsman, M., Paier, J., Stroppa, A. & Kresse, G. Hybrid functionals applied to extended systems. J. Phys. 20, 064201 (2008).

Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

Knoch, J., Zhang, M., Appenzeller, J. & Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A 87, 351–357 (2007).

Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013).

Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006).

Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

Petaccia, L. et al. BaDElPh: A normal-incidence monochromator beamline at Elettra. Nucl. Instrum. Methods 606, 780–784 (2009).

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).