Black phosphorus and its isoelectronic materials

Nature Reviews Physics - Tập 1 Số 5 - Trang 306-317
Fengnian Xia1, Han Wang2, James C. M. Hwang3, A. H. Castro Neto4, Li Yang5
1Department of Electrical Engineering, Yale University, New Haven, CT, USA
2Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
3Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
4Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
5Department of Physics, Washington University, St. Louis, MO, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

Zhang, Y., Tan, Y., W., Störmer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005).

Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

Mak, K. F. et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys.Rev. Lett. 105, 136805 (2010).

Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

Hunt, B. et al. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

Xu, G., Zhang, Y., Duan, X., Balandin, A. A. & Wang, K. L. Variability effects in graphene: challenges and opportunities for device engineering and applications. Proc. IEEE 101, 1670–1688 (2013).

Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer scale homogeneity. Nature 520, 656–660 (2015).

Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). This paper demonstrates the first BP transistor.

Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).This paper reported on monolayer black phosphorus and introduced “phosphorene”. It also showed high hole mobility in thin-film BP.

Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).In this paper, black phosphorus was reintroduced as a layered thin-film material with anisotropic in-plane optical conductivity and Hall mobility.

Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single and bilayer black phosphorus. Phys. Rev. B 89, 201408 (2014).

Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

Du, Y. et al. Auxetic black phosphorus: 2D material with negative Poisson’s ratio. Nano Lett. 16, 6701–6708 (2016).

Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016). This paper reported Quantum Hall Effect in thin-film black phosphorus.

Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

Deng, B. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).

Cao, T., Li, Z., Qiu, Q. Y. & Louie, S. G. Gate switchable transport and optical anisotropy in 90o twisted bilayer black phosphorus. Nano Lett. 16, 5542–5546 (2016).

Liu, Q., Zhang, X., Abdalla, L. B., Fazzio, A. & Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15, 1222–1228 (2015). This paper predicts the topological phase transition in biased BP.

Zhang, G. et al. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017).

Liu, Y. et al. Gate-tunable giant Stark effect in few-layer black phosphorus. Nano Lett. 17, 1970–1977 (2017).

Singh, A. K. & Hennig, R. G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 105, 042103 (2014).

Gomes, L. C. & Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 92, 085406 (2015).

Shi, G. & Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 15, 6926–6931 (2015).

Fei, R., Li, W., Li, J. & Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015). In this paper, giant piezoelectricity in monochalcogenides was predicted.

Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

Gomes, L. C., Carvalho, A. & Castro Neto A. H. Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Phys.Rev. B 94, 054103 (2016).

Rodin, A. S., Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Valley physics in tin (II) sulfide. Phys. Rev. B 93, 045431 (2016). This paper predicted that equivalent valleys in monolayer tin sulfide can be selectively addressed by linear polarized light.

Hanakata., P. Z., Carvalho, A., Campbell, D. K. & Park, H. S. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B 94, 035304 (2016).

Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group-IV monochalcogenides. 2D Mater. 4, 015042 (2017).

Kamal, C. & Ezawa, M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015).

Zhu, Z., Guan, J. & Tománek, D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study. Phys. Rev. B 91, 161404 (2015).

Zhang, S. et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. 128, 1698–1701 (2016).

Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

Liu, B. et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

Sofer, Z. et al. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem. Int. Ed. 55, 3382–3386 (2016).

Mayorga-Martinez, C. C., Sofer, Z. & Pumera, M. Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54, 14317–14320 (2015).

Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

Castellanos-Gomez, A. J. Black phosphorus: narrow gap, wide applications. Phys. Chem. Lett. 6, 4280–4291 (2015).

Wang, X. & Lan, S. Optical properties of black phosphorus. Adv. Opt. Photon. 8, 618–655 (2016).

Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

Morita, A., Asahina, H., Kaneta, C. & Sasaki, T. Proc. 17th Int. Conf. Phys. Semiconductors (eds Chadi, J. D. & Harrison, W. A.) 1320–1324 (Springer, New York 1985).

Gaddemane, G. et al. Theoretical studies of electronic transport in mono- and bi-layer phosphorene: a critical overview. Phys. Rev. B 98, 115416 (2018).

Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016).

Kuriakose, S. et al. Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Appl. Mater. Today 12, 244–249 (2018).

Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

Ballipinar, F. & Rastogi, A. Single-step organic vapor phase sulfurization synthesis of p-SnS photo-absorber for graded band-gap thin film heterojunction solar cells with n-ZnO1-xSx. MRS Adv. 1, 2801–2806 (2016).

Xue, D. et al. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 139, 858–965 (2017).

Wang, G., Pandey, R. & Karna, S. P. Atomically thin group V elemental films: theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).

Pizzi, G. et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).

Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

Whitney, W. S. et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17, 78–84 (2017).

Peng, R. et al. Mid-infrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 17, 6315–6320 (2017).

Lin, C., Grassi, R., Low, T. & Helmy, A. S. Multilayer black phosphorus as a versatile mid-infrared electro-optic materials. Nano Lett. 16, 1683–1689 (2016).

Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

Xiang, Z. J. et al. Pressure-induced electronic transition in black phosphorus. Phys. Rev. Lett. 115, 186403 (2015).

Fei, R., Tan, V. & Yang, L. Topologically protected Dirac cones in compressed bulk black phosphorus. Phys. Rev. B. 91, 195319 (2015).

Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92, 214103 (2015).

Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015). In this paper, the oxidation effect of BP is investigated theoretically.

Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014). This paper demonstrates the effect passivation scheme of BP.

Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015). This paper shows the long-term stability of monolayer and few-layer BP encapsulated by hBN and reports on their transport properties.

Artel, V. et al. Protective molecular passivation of black phosphorus. 2D Mater. Appl. 1, 6 (2017).

Illarionov, Y. et al. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 10, 9543–9549 (2016).

Jiang, J. et al. Two-step fabrication of single-layer rectangular SnSe flakes. 2D Mater. 4, 021026 (2017).

Hu, W. & Yang, J. Defects in phosphorene. J. Phys. Chem. C. 119, 20474–20480 (2015).

Cai, Y., Ke, Q., Zhang, G., Yakobson, B. & Zhang, Y.-W. Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016).

Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014).

Osters, O. et al. Synthesis and identification of metastable compounds: black arsenic-science or fiction? Angew. Chem. Int. Ed. 51, 2994–2997 (2012).

Smith, J. B., Hagaman, D. & Ji, H. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016).

Li, X. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 1–6 (2015).

Yang, Z. et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015).

Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

Li, C. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1703748 (2018).

Sorgato, I., Guarise, G. B. & Marani, A. Red to black phosphorus transition up to 65 kbar. High. Temp. High. Press. 2, 105–111 (1970).

Sun, Q. et al. Pressure quenching: a new route for the synthesis of black phosphorus. Inorg. Chem. Front. 5, 669–674 (2018).

Jang, A.-R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

Zhang, J. L. et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903–4908 (2016).

Gao, J., Zhang, G. & Zhang, Y.-W. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J. Am. Chem. Soc. 138, 4763–4771 (2016).

Zhao, S. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288–295 (2015).

Zhang, L. et al. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci. Rep. 6, 19830 (2016).

Li, L. et al. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135, 1213–1216 (2013).

Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 479, 324–328 (2011).

Koenig, S. P. et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

Prakash, A., Cai, Y., Zhang, G., Zhang, Y.-W. & Ang, K.-W. Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 13, 1602909 (2017).

Luo, X. et al. Continuous-wave and transient characteristics of phosphorene microwave transistors. Dig. IEEE MTT-S Int. Microwave Symp. https://doi.org/10.1109/MWSYM.2016.7540290 (2016).

Li, T. et al. Black phosphorus radio frequency electronics at cryogenic temperatures. Adv. Electron. Mater. 4, 1800138 (2018).

Lundstrom, M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18, 361–363 (1997).

Dorgan, V. E., Bae, M. H. & Pop, E. Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97, 082112 (2010).

Chen, X. et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 12, 5003–5010 (2018).

Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

Sylvia, S. S. et al. Material selection for minimizing direct tunneling in nanowire transistors. IEEE Trans. Electron Devices 59, 2064–2069 (2012).

Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).

Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black arsenic phosphorus alloys. ACS Nano 11, 11724–11731 (2017).

Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

Younis, U. et al. Germanium-on-SOI waveguides for mid-infrared wavelengths. Opt. Express 24, 11987–11993 (2016).

Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

Kang, J., Takenaka, M. & Takagi, S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express 24, 11855–11864 (2016).

Deckoff-Jones, S. et al. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors. J. Opt. 20, 044004 (2018).

Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019).

Malik, A. et al. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers. IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).

Martyniuk, P., Antoszewski, J., Martyniuk, M., Faraone, L. & Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014).

Zhu, Z., Guan, J. & Tomanek, D. Structural transition in layered As1–xPx compounds: a computational study. Nano Lett. 15, 6042–6046 (2015).

ŽutiĆ, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall Effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

Kim, J. et al. Two-dimensional Dirac Fermions protected by space-time inversion symmetry in black phosphorus. Phys. Rev. Lett. 119, 226801 (2017).

Haleoot, R. et al. Photostrictive two-dimensional materials in the monochalcogenide family. Phys. Rev. Lett. 118, 227401 (2017).

Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 8703–9709 (2011).

Michel, K. H. & Verberck, B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 80, 224301 (2009).

Duerloo, K. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

Wu, W. Z. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

Schick, V. et al. Optical writing of magnetic properties by remanent photostriction. Phys. Rev. Lett. 117, 107403 (2016).

Paillard, C., Xu, B., Dkhil, B., Geneste, G. & Bellaiche, L. Photostriction in ferroelectrics from density functional theory. Phys. Rev. Lett. 116, 247401 (2016).

Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016).

Liu, C., Qin, H. & Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007).

Wang, H. & Qian, X. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017).

Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications 17–38 (Springer, 2008).

Jaffe, B., Cook, W. R. Jr. & Jaffe, H. Piezoelectric Ceramics. (Academic Press, London, 1971).

Batra, I. P., Wurfel, P. & Silverman, B. D. New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30, 384 (1973).

Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splitting in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618 (1994).

Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).

Seixas, L., Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016).

Cao, T., Li, Z. & Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 114, 236602 (2015).