Black Phosphorous and Cytop Nanofilm‐Based Long‐Range SPR Sensor with Enhanced Quality Factor

Journal of Sensors - Tập 2023 Số 1 - 2023
Bhishma Karki1,2, Arun Uniyal3, G. Srivastava4, Amrindra Pal5
1Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
2National Research Council Nepal, New Baneshwor-10, Kathmandu 44600, Nepal
3Department of ECE, IT Gopeshwar, Chamoli, 246424 Uttarakhand, India
4Department of Electronics and Communication, University of Allahabad, India
5Department of ECE, DIT University, Dehradun, 248009 Uttarakhand, India

Tóm tắt

This numerical work proposes two novel designs of long‐range surface plasmon resonance sensors (LRSPR) using two different coupling prisms. The performance analysis of the proposed sensor has been investigated using the performance parameters like quality factor (Q), detection accuracy (DA), sensitivity (S), and full‐width half maximum (FWHM). The transfer matrix method (TMM) has been employed to compute reflectance. The role of the basic recognition element (BRE) has been played by the popular two‐dimensional (2D) material, black phosphorus (BP), due to its many optoelectrical features. The maximum obtained values for Q, DA, and S are 3333.25 (1/RIU), 250 (degree−1), and 13.33333 degree/RIU for 2S2G coupled sensor design and 3055.5 (1/RIU), 83.33 (degree−1), and 36.66667 degree/RIU for BK7 coupled sensor design. The operating wavelength of 633 nm, followed by the principle of attenuated total reflection (ATR), has been employed to carry out the theoretical investigation.

Từ khóa


Tài liệu tham khảo

10.1002/lpor.201000009

10.1016/j.bios.2020.112508

10.3390/photonics8090379

10.1016/j.ijleo.2021.166378

10.1016/j.snb.2016.06.090

10.1364/ao.56.009606

10.1016/j.optcom.2016.06.008

10.1016/j.ijleo.2020.165842

10.1021/acssensors.6b00735

10.3390/bios8010023

10.1016/j.talanta.2009.06.044

10.1042/EBC20150010

10.1016/j.optlaseng.2018.09.013

10.1103/PhysRevLett.47.1927

10.1364/AO.454789

10.3390/nano12010168

10.1007/s11468-021-01421-w

10.1088/1402-4896/ac5e5b

10.1007/s11082-019-2057-8

10.1364/OE.21.000698

10.1038/s41524-019-0184-1

10.1007/s10825-022-01854-4

10.1515/zna-1968-1247

10.1016/j.rinp.2019.102320

10.1007/BF01391532

10.1109/JPHOT.2021.3097368

10.1007/s11468-020-01204-9

10.1021/ac050402v

10.1016/j.snb.2016.11.120

10.1021/ac301904x

10.1109/JPHOT.2016.2633402

10.1109/JSEN.2021.3112530

10.1038/nnano.2014.35

10.1088/2053-1583/aa8d37

10.1088/0957-4484/27/21/215602

10.1109/LSENS.2019.2954052

10.1039/c3sc52638k

10.1016/j.snb.2012.04.051

10.1063/1.2721779

10.1039/c3cp44715d

10.1007/978-3-319-76556-3

10.1007/s11468-020-01255-y

10.1016/j.physb.2022.414487

10.1364/ol.38.003542

10.1117/1.oe.61.5.057103

10.1016/j.ijleo.2022.169947

10.1016/j.sna.2010.02.005

10.1007/s11468-022-01644-5

10.3390/s18072098

10.1109/JSEN.2019.2937843

10.1063/1.4909534

10.1109/tnb.2021.3115906