Cắt tỉa Bit: phân loại định lượng bảo toàn độ chính xác một cách chính xác về mặt thống kê với nén dữ liệu, được đánh giá trong các Công cụ netCDF (NCO, v4.4.8+)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Burtscher, M. and Ratanaworabhan, P.: FPC: A high-speed compressor for double-precision floating-point data, IEEE T. Comput., 58, 18–31, https://doi.org/10.1109/TC.2008.131, 2009.
Caron, J.: Compression by scaling and offset, available at: http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_scaling_and_offfset (last access: 13 September 2016), 2014a.
Caron, J.: Compression by bit shaving, available at: http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_bit_shaving (last access: 13 September 2016), 2014b.
Collet, Y.: LZ4 lossless compression algorithm, available at: http://lz4.org (last access: 13 September 2016), 2013.
Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley, P. H.: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. C., 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012.
Deutsch, L. P.: DEFLATE compressed data format specification version 1.3, Tech. Rep. IETF RFC1951, Internet Engineering Task Force, Menlo Park, CA, USA, https://doi.org/10.17487/RFC1951, 1996.
Eaton, B., Gregory, J., Drach, B., Taylor, K., and Hankin, S.: NetCDF Climate and Forecast (CF) metadata conventions, available at: http://cfconventions.org/cf-conventions, last access: 13 September 2016.
Gailly, J.-L. and Adler, M.: zlib documentation, available at: http://zlib.net (last access: 13 September 2016), 2000.
Gregory, J.: The CF metadata standard, CLIVAR Exchanges, 8, 4, available at: http://cfconventions.org/Data/cf-documents/overview/article.pdf (last access: 13 September 2016), 2003.
HDF Group: HDF5: API Specification Reference Manual, The HDF Group, Champaign-Urbana, IL, USA, 2015.
IEEE: IEEE standard for floating-point arithmetic, Tech. Rep. ISO/IEC/IEEE 60559 (IEEE Std 754-2008), IEEE Computer Society, Piscataway, NJ, USA, 2008.
Isenburg, M., Lindstrom, P., and Snoeyink, J.: Lossless compression of predicted floating-point geometry, Comput. Aided Design, 37, 869–877, https://doi.org/10.1016/j.cad.2004.09.015, 2005.
Krotkov, N. A., McClure, B., Dickerson, R. R., Carn, S. A., Li, C., Bhartia, P. K., Yang, K., Krueger, A. J., Li, Z., Levelt, P. F., Chen, H., Wang, P., and Lu, D.: Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J. Geophys. Res., 113, D16S40, https://doi.org/10.1029/2007JD008818, 2008.
Liu, S., Huang, X., Ni, Y., Fu, H., and Yang, G.: A high performance compression method for climate data, in: IEEE International Symposium on Parallel and Distributed Processing with Applications, 26–28 August 2014, Milan, Italy, 68–77, https://doi.org/10.1109/ISPA.2014.18, 2014.
Rew, R., Hartnett, E., and Caron, J.: NetCDF-4: Software implementing an enhanced data model for the geosciences, in: Proceedings of the 22nd AMS Conference on Interactive Information and Processing Systems for Meteorology, 24–28 January 2006, p. 6.6, American Meteorological Society, AMS Press, Boston, MA, USA, 2006.
Rew, R., Davis, G., Emmerson, S., and Davies, H.: The NetCDF Users' Guide, Version 3.6.1, University Corporation for Atmospheric Research, Boulder, CO, USA, available at: http://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html, last access: 13 September 2016.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., and Kim, G.-K.: MERRA: NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, 2011.
Salomon, D. and Molta, G.: Handbook of Data Compression, 5th ed., Springer-Verlag, London, UK, 2010.
Seward, J.: bzip2 documentation, available at: http://bzip.org (last access: 13 September 2016), 2007.
Silver, J. D. and Zender, C. S.: Finding the Goldilocks zone: Compression-error trade-off for large gridded datasets, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-177, in review, 2016.
Zender, C. S.: Analysis of self-describing gridded geoscience data with netCDF Operators (NCO), Environ. Modell. Softw., 23, 1338–1342, https://doi.org/10.1016/j.envsoft.2008.03.004, 2008.
Zender, C. S.: NCO User Guide, available at: http://nco.sf.net/nco.pdf, last access: 13 September 2016a.
Zender, C. S.: netCDF Operators (NCO), version 4.6.1, Zenodo, https://doi.org/10.5281/zenodo.61341, 2016b.
Zender, C. S. and Mangalam, H. J.: Scaling properties of common statistical operators for gridded datasets, Int. J. High Perform. C., 21, 458–498, https://doi.org/10.1177/1094342007083802, 2007.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment And Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003.
Ziv, J. and Lempel, A.: A universal algorithm for sequential data compression, IEEE T. Inform. Theory, 23, 337–343, 1977.