Bisubmodular polyhedra, simplicial divisions, and discrete convexity

Discrete Optimization - Tập 12 - Trang 115-120 - 2014
Satoru Fujishige1
1Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Tài liệu tham khảo

Murota, 2003 Fujishige, 2005 Frank, 1984, Generalized polymatroids, vol. 37, 285 Hassin, 1982, Minimum cost flow with set-constraints, Networks, 12, 1, 10.1002/net.3230120102 Murota, 2009, Recent developments in discrete convex analysis, 219 Tamura, 2004, Applications of discrete convex analysis to mathematical economics, Publ. Res. Inst. Math. Sci. Kyoto Univ., 40, 1015, 10.2977/prims/1145475501 Edmonds, 1970, Submodular functions, matroids, and certain polyhedra, 69 Ando, 1996, On structures of bisubmodular polyhedra, Math. Program., 74, 293, 10.1007/BF02592201 Bouchet, 1987, Greedy algorithm and symmetric matroids, Math. Program., 38, 147, 10.1007/BF02604639 Bouchet, 1995, Delta-matroids, jump systems, and bisubmodular polyhedra, SIAM J. Discrete Math., 8, 17, 10.1137/S0895480191222926 Chandrasekaran, 1988, Pseudomatroids, Discrete Math., 71, 205, 10.1016/0012-365X(88)90101-X Qi, 1988, Directed submodularity, ditroids and directed submodular flows, Math. Program. A, 42, 579, 10.1007/BF01589420 Ando, 1996, Decomposition of a signed graph into strongly connected components and its signed poset structure, Discrete Appl. Math., 68, 237, 10.1016/0166-218X(95)00068-3 Fujishige, 1997, A min–max theorem for bisubmodular polyhedra, SIAM J. Discrete Math., 10, 294, 10.1137/S0895480194264344 Geelen, 1996, Lectures on jump systems Murota, 2006, M-convex functions on jump systems: a general framework for minsquare graph factor, SIAM J. Discrete Math., 20, 213, 10.1137/040618710 Dress, 1991, A greedy algorithm characterization of valuated Δ-matroids, Appl. Math. Lett., 4, 55, 10.1016/0893-9659(91)90075-7 K. Takazawa, Optimal matching forests and valuated delta-matroids, in: IPCO 2011, in:LNCS, vol. 6655, pp. 404–416. Also, SIAM Journal on Discrete Mathematics, in press.