Các điện cực tự đứng dựa trên Bismuth cho sản xuất Ammonia trong điều kiện môi trường trung tính

Nano-Micro Letters - Tập 12 Số 1 - 2020
Ying Sun1, Zizhao Deng1, Xi‐Ming Song2, Hui Li1, Zi‐Hang Huang1, Qin Zhao1, Daming Feng1, Wei Zhang2, Zhao‐Qing Liu3, Tianyi Ma4
1Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People’s Republic of China
2Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People’s Republic of China
3School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, Guangzhou 510006, People’s Republic of China
4Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia

Tóm tắt

Tóm tắtPhản ứng khử nitơ điện xúc tác là một chiến lược không phát thải carbon và tiết kiệm năng lượng cho việc tổng hợp ammonia hiệu quả trong điều kiện môi trường. Ở đây, chúng tôi báo cáo về việc tổng hợp các hạt Bi2O3 kích thước nano được hình thành trên graphene nghiền tách chức năng (Bi2O3/FEG) thông qua một phương pháp lắng điện hóa đơn giản. Bi2O3/FEG độc lập thu được đạt được hiệu suất Faradaic cao là 11,2% và năng suất NH3 lớn là 4,21 ± 0,14 $$ \upmu{\text{g}}_{{{\text{NH}}_{3} }} $$ μ g NH 3  h−1 cm−2 ở − 0,5 V so với điện cực hydro đảo chiều trong dung dịch Na2SO4 0,1 M, tốt hơn so với trong môi trường axit và kiềm mạnh. Nhờ vào sự tương tác mạnh mẽ của băng Bi 6p với quỹ đạo N 2p, đặc điểm không có chất kết dính, và sự chuyển giao điện tử dễ dàng, Bi2O3/FEG đạt được hiệu suất xúc tác vượt trội và độ ổn định dài hạn xuất sắc so với hầu hết các chất xúc tác đã được báo cáo trước đây. Nghiên cứu này có ý nghĩa trong việc thiết kế các điện xúc tác dựa trên Bismuth có chi phí thấp và hiệu quả cao cho tổng hợp ammonia điện hóa.

Từ khóa


Tài liệu tham khảo

Z.Q. Wang, K. Zheng, S.L. Liu, Z.C. Dai, Y. Xu, X.N. Li, H.J. Wang, L. Wang, Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustain. Chem. Eng. 13, 11754–11759 (2019). https://doi.org/10.1021/acssuschemeng.9b01991

H. Cheng, L.X. Ding, G.F. Chen, L.L. Zhang, J. Xue, H.H. Wang, Nitrogen reduction reaction: molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 46, 1870350 (2018). https://doi.org/10.1002/adma.201870350

V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 6, 2209–2244 (2009). https://doi.org/10.1021/cr8003696

C.D. Lv, C.S. Yan, G. Chen, Y. Ding, J.X. Sun, Y.S. Zhou, G.H. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 21, 6073–6076 (2018). https://doi.org/10.1002/anie.201801538

C.J.M. Van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 15, 5183–5191 (2014). https://doi.org/10.1039/C4CS00085D

H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9

H.J. Wang, H.J. Yu, Z.Q. Wang, Y.H. Li, Y. Xu, X.N. Li, H.R. Xue, L. Wang, Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 6, 1804769 (2019). https://doi.org/10.1002/smll.201804769

G.F. Chen, X.R. Cao, S.Q. Wu, X.Y. Zeng, L.X. Ding, M. Zhu, H.H. Wang, Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 29, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393

M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 17, 1606550 (2017). https://doi.org/10.1002/adma.201606550

M. Bat-Erdene, G.R. Xu, M. Batmunkh, A.S.R. Bati, J.J. White et al., Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. J. Mater. Chem. A 9, 4735–4739 (2020). https://doi.org/10.1039/C9TA13485A

Y.F. Li, T.S. Li, X.J. Zhu, A.A. Alshehri, K.A. Alzahrani, S.Y. Lu, X.P. Sun, DyF3: an efficient electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem. Asian J. 4, 487–489 (2020). https://doi.org/10.1002/asia.201901624

M.G. Wu, J.Q. Liao, L.X. Yu, R.T. Lv, P. Li et al., 2020 Roadmap on carbon materials for energy storage and conversion. Chem. Asian J. 15(7), 995–1013 (2020). https://doi.org/10.1002/asia.201901802

X.H. Guo, Y.P. Zhu, T.Y. Ma, Lowering reaction temperature: electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J. Energy Chem. 6, 1107–1116 (2017). https://doi.org/10.1016/j.jechem.2017.09.012

C.Y. Ling, X.W. Bai, Y.X. Ouyang, A.J. Du, J.L. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 29, 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257

T.W. He, S.K. Matta, A.J. Du, Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 3, 1546–1551 (2019). https://doi.org/10.1039/C8CP06978F

Y. Yao, H.J. Wang, X.Z. Yuan, H. Li, M.H. Shao, Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 6, 1336–1341 (2019). https://doi.org/10.1021/acsenergylett.9b00699

H.J. Wang, Y.H. Li, C.J. Li, K. Deng, Z.Q. Wang, Y. Xu, X.N. Li, H.R. Xue, L. Wang, One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. J. Mater. Chem. A 2, 801–805 (2019). https://doi.org/10.1039/C8TA09482A

D.S. Yang, T. Chen, Z.J. Wang, Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 36, 18967–18971 (2017). https://doi.org/10.1039/C7TA06139K

H.T. Du, X.X. Guo, R.M. Kong, F.L. Qu, Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. Chem. Commun. 91, 12848–12851 (2018). https://doi.org/10.1039/C8CC07186A

K. Chu, Y.P. Liu, J. Wang, H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Appl. Energy Mater. 3, 2288–2295 (2019). https://doi.org/10.1021/acsaem.9b00102

T. Xu, D.W. Ma, C.B. Li, Q. Liu, S.Y. Lu, A.M. Asiri, C. Yang, X.P. Sun, Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles. Chem. Commun. 25, 3673–3676 (2020). https://doi.org/10.1039/C9CC10087C

X.H. Li, X. Ren, X.J. Liu, J.X. Zhao, X. Sun et al., A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 6, 2524–2528 (2019). https://doi.org/10.1039/C8TA10433F

P.X. Li, W.Z. Fu, P.Y. Zhuang, Y.D. Cao, C. Tang et al., Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 40, 1902535 (2019). https://doi.org/10.1002/smll.201902535

H.Y. Jin, L.Q. Li, X. Liu, C. Tang, W.J. Xu et al., Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 32, 1902709 (2019). https://doi.org/10.1002/adma.201902709

G.F. Chen, S.Y. Ren, L.L. Zhang, H. Cheng, Y.R. Luo, K.H. Zhu, L.X. Ding, H.H. Wang, Nitrogen reduction reactions: advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 6, 1970016 (2019). https://doi.org/10.1002/smtd.201970016

J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem 13, 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322

Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji et al., Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations. Adv. Sci. 1, 1801182 (2019). https://doi.org/10.1002/advs.201801182

Y. Wang, M.M. Shi, D. Bao, F.L. Meng, Q. Zhang et al., Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem. Int. Ed. 28, 9464–9469 (2019). https://doi.org/10.1002/anie.201903969

Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 5, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7

F.Y. Wang, X. Lv, X.J. Zhu, J. Du, S.Y. Lu et al., Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 14, 2107–2110 (2020). https://doi.org/10.1039/C9CC09803H

L.Q. Li, C. Tang, B.Q. Xia, H.Y. Jin, Y. Zheng, S.Z. Qiao, Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 4, 2902–2908 (2019). https://doi.org/10.1021/acscatal.9b00366

Y. Peng, M. Yan, Q.G. Chen, C.M. Fan, H.Y. Zhou, A.W. Xu, Novel one-dimensional Bi2O3–Bi2WO6 p–n hierarchical heterojunction with enhanced photocatalytic activity. J. Mater. Chem. A 22, 8517–8524 (2014). https://doi.org/10.1039/C4TA00274A

H.J. Lu, Q. Hao, T. Chen, L.H. Zhang, D.M. Chen, C. Ma, W.Q. Yao, Y.F. Zhu, A high-performance Bi2O3/Bi2SiO5 p–n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B-Environ. (2018). https://doi.org/10.1016/j.apcatb.2018.05.069

S. Sanna, V. Esposito, J.W. Andreasen, J. Hjelm, W. Zhang et al., Enhancement of the chemical stability in confined δ-Bi2O3. Nat. Mater. 5, 500–504 (2015). https://doi.org/10.1038/nmat4266

Y. Song, X. Cai, X.X. Xu, X.X. Liu, Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J. Mater. Chem. A 28, 14712–14720 (2015). https://doi.org/10.1039/C5TA02810H

J.H. Cao, K.X. Wang, J.Y. Chen, C.J. Lei, B. Yang, Z.J. Li, L.C. Lei, Y. Hou, K. Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4

Y.L. Yang, Y. Tang, H.M. Jiang, Y.M. Chen, P.Y. Wan et al., 2020 Roadmap on gas-involved photo- and electro-catalysis. Chin. Chem. Lett. 12, 2089–2109 (2019). https://doi.org/10.1016/j.cclet.2019.10.041

Y.W. Cheng, H.B. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 11, 3314–3321 (2013). https://doi.org/10.1039/C3EE41143E

D. Chen, L.H. Tang, J.H. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 8, 3157–3180 (2010). https://doi.org/10.1039/B923596E

S. Mukherjee, Z. Ren, G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10, 70 (2018). https://doi.org/10.1007/s40820-018-0224-2

Y. Sun, W. Zhang, J. Tong, Y. Zhang, S.Y. Wu et al., Significant enhancement of visible light photocatalytic activity of the hybrid B12-PIL/rGO in the presence of Ru(bpy)2+3 for DDT dehalogenation. RSC Adv. 31, 19197–19204 (2017). https://doi.org/10.1039/C7RA02062G

Y.L. Yang, M.G. Wu, X.W. Zhu, H. Xu, S. Ma et al., 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chin. Chem. Lett. 12, 2065–2088 (2019). https://doi.org/10.1016/j.cclet.2019.11.001

Y.B. Xu, Y. Song, Z.G. Zhang, A binder-free fluidizable Mo/HZSM-5 catalyst for non-oxidative methane dehydroaromatization in a dual circulating fluidized bed reactor system. Catal. Today (2017). https://doi.org/10.1016/j.cattod.2016.03.037

C.H. Jiang, Z.X. Ye, H.T. Ye, Z.M. Zou, Li4Ti5O12@carbon cloth composite with improved mass loading achieved by a hierarchical polypyrrole interlayer assisted hydrothermal process for robust free-standing sodium storage. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144464

J.C. Liu, H. Li, M. Batmunkh, X. Xiao, Y. Sun, Q. Zhao, X. Liu, Z.H. Huang, T.Y. Ma, Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 41, 23941–23948 (2019). https://doi.org/10.1039/C9TA04835A

B. Yu, H. Li, J. White, S. Donne, J.B. Yi et al., Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 6, 1905665 (2020). https://doi.org/10.1002/adfm.201905665

S.B. Liu, X.F. Lu, J. Xiao, X. Wang, X.W. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 39, 13828–13833 (2019). https://doi.org/10.1002/anie.201907674

Q. Qin, M. Oschatz, Overcoming chemical inertness under ambient conditions: a critical view on recent developments in ammonia synthesis via electrochemical N2 reduction by asking five questions. ChemElectroChem 4, 878–889 (2020). https://doi.org/10.1002/celc.201901970

D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 3, 1604799 (2017). https://doi.org/10.1002/adma.201604799