Bisimulation-based stabilization of probabilistic Boolean control networks with state feedback control

Nan Jiang1, Chi Huang2,1, Yao Chen1, Jürgen Kurths3,4,5
1School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu, China
2School of Mathematics, Southeast University, Nanjing, China
3Potsdam Institute for Climate Impact Research, Potsdam, Germany
4Saratov State University, Saratov, Russia
5Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bof N, Fornasini E, Valcher ME, 2015. Output feedback stabilization of Boolean control networks. Automatica, 57:21–28. https://doi.org/10.1016/j.automatica.2015.03.032

Chen H, Liang J, Wang Z, 2016. Pinning controllability of autonomous Boolean control networks. Sci China Inform Sci, 59(7):070107. https://doi.org/10.1007/s11432-016-5579-8

Cheng D, 2009. Input-state approach to Boolean networks. IEEE Trans Neur Netw, 20(3):512–521. https://doi.org/10.1109/TNN.2008.2011359

Cheng D, Qi H, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659–1667. https://doi.org/10.1016/j.automatica.2009.03.006

Cheng D, Li Z, Qi H, 2010a. Realization of Boolean control networks. Automatica, 46(1):62–69. https://doi.org/10.1016/j.automatica.2009.10.036

Cheng D, Qi H, Li Z, 2010b. Analysis and Control of Boolean Networks. Springer, London, UK. https://doi.org/10.1007/978-0-85729-097-7

Cheng D, Qi H, Li Z, et al., 2011. Stability and stabilization of Boolean networks. Int J Robust Nonl Contr, 21(2):134–156. https://doi.org/10.1002/rnc.1581

Ching WK, Zhang SQ, Jiao Y, et al., 2009. Optimal control policy for probabilistic Boolean networks with hard constraints. IET Syst Biol, 3(2):90–99. https://doi.org/10.1049/iet-syb.2008.0120

Fornasini E, Valcher ME, 2012. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390–1401. https://doi.org/10.1109/TAC.2012.2231592

Fornasini E, Valcher ME, 2014. Optimal control of Boolean control networks. IEEE Trans Autom Contr, 59(5):1258–1270. https://doi.org/10.1109/TAC.2013.2294821

Guo Y, Wang P, Gui W, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106–112. https://doi.org/10.1016/j.automatica.2015.08.006

Huang C, Wang W, Cao JD, et al., 2018. Synchronization-based passivity of partially coupled neural networks with event-triggered communication. Neurocomputing, 319:134–143. https://doi.org/10.1016/j.neucom.2018.08.060

Huang C, Lu JQ, Ho WCD, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205–217. https://doi.org/10.1016/j.ins.2019.09.029

Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437–467. https://doi.org/10.1016/0022-5193(69)90015-0

Laschov D, Margaliot M, 2012. Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica, 48(6):1218–1223. https://doi.org/10.1016/j.automatica.2012.03.022

Li BW, Lou JG, Liu Y, et al., 2019. Robust invariant set analysis of Boolean networks. Complexity, 2019:2731395. https://doi.org/10.1155/2019/2731395

Li FF, 2016. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 27(7):1585–1590. https://doi.org/10.1109/TNNLS.2015.2449274

Li FF, Xie LH, 2019. Set stabilization of probabilistic Boolean networks using pinning control. IEEE Trans Neur Netw Learn Syst, 30(8):2555–2561. https://doi.org/10.1109/TNNLS.2018.2881279

Li FF, Yu ZX, 2016. Anti-synchronization of two coupled Boolean networks. J Franklin Inst, 353(18):5013–5024. https://doi.org/10.1016/j.jfranklin.2016.09.023

Li HT, Wang YZ, 2016. Minimum-time state feedback stabilization of constrained Boolean control networks. Asian J Contr, 18(5):1688–1697. https://doi.org/10.1002/asjc.1234

Li R, Yang M, Chu TG, 2014a. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272–1278. https://doi.org/10.1016/j.automatica.2014.02.034

Li R, Yang M, Chu TG, 2014b. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272–1278. https://doi.org/10.1016/j.automatica.2014.02.034

Li R, Chu TG, Wang XY, 2018. Bisimulations of Boolean control networks. SIAM J Contr Optim, 56(1):388–416. https://doi.org/10.1137/17M1117331

Li YY, Li BW, Liu Y, et al., 2018. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624–35630. https://doi.org/10.1109/ACCESS.2018.2851391

Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572–112577. https://doi.org/10.1109/ACCESS.2019.2934740

Liang JH, Han J, 2012. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol, 6(1):113. https://doi.org/10.1186/1752-0509-6-113

Liang JL, Chen HW, Liu Y, 2017. On algorithms for state feedback stabilization of Boolean control networks. Automatica, 84:10–16. https://doi.org/10.1016/j.automatica.2017.06.040

Liu RJ, Qian CJ, Liu SQ, et al., 2016. State feedback control design for Boolean networks. BMC Syst Biol, 10(3):70. https://doi.org/10.1186/s12918-016-0314-z

Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595–6601. https://doi.org/10.1109/TAC.2017.2715181

Lu J, Zhong J, Huang C, et al., 2016. On pinning controllability of Boolean control networks. IEEE Trans Autom Contr, 61(6):1658–1663. https://doi.org/10.1109/TAC.2015.2478123

Lu J, Li M, Huang T, et al., 2018a. The transformation between the Galois NLFSRs and the Fibonacci NLF-SRs via semi-tensor product of matrices. Automatica, 96:393–397. https://doi.org/10.1016/j.automatica.2018.07.011

Lu J, Sun L, Liu Y, et al., 2018b. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385–4404. https://doi.org/10.1137/18M1169308

Ma Z, Wang ZJ, McKeown MJ, 2008. Probabilistic Boolean network analysis of brain connectivity in Parkinson’s disease. IEEE J Sel Top Signal Process, 2(6):975–985. https://doi.org/10.1109/JSTSP.2008.2007816

Shmulevich I, Dougherty ER, Kim S, et al., 2002. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274. https://doi.org/10.1093/bioinformatics/18.2.261

Sun LJ, Lu JQ, Ching WK, 2020. Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. Front Inform Technol Electron Eng, 21(2):260–267. https://doi.org/10.1631/FITEE.1900312

Tong LY, Liu Y, Li YY, et al., 2018a. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767–37774. https://doi.org/10.1109/ACCESS.2018.2828128

Tong LY, Liu Y, Lou JG, et al., 2018b. Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks. Appl Math Comput, 332:263–275. https://doi.org/10.1016/j.amc.2018.03.043

Veliz-Cuba A, Stigler B, 2011. Boolean models can explain bistability in the lac operon. J Comput Biol, 18(6):783–794. https://doi.org/10.1089/cmb.2011.0031

Wang LP, Pichler EE, Ross J, 1990. Oscillations and chaos in neural networks: an exactly solvable model. PANS, 87(23):9467–9471. https://doi.org/10.1073/pnas.87.23.9467

Xiong WJ, Ho WCD, Xu L, 2019. Multi-layered sampleddata iterative learning tracking for discrete systems with cooperative-antagonistic interactions. IEEE Trans Cybern, online. https://doi.org/10.1109/TCYB.2019.2915664

Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321–1341. https://doi.org/10.1137/16M1070281

Zhu QX, Liu Y, Lu JQ, et al., 2019. Further results on the controllability of Boolean control networks. IEEE Trans Autom Contr, 64(1):440–442. https://doi.org/10.1109/TAC.2018.2830642

Zhu SY, Lou J, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348. https://doi.org/10.1155/2018/9259348

Zhu SY, Lu JG, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, online. https://doi.org/10.1109/TAC.2019.2934532