Bird dependence on wetlands determines functional responses to flood pulse in the Brazilian Pantanal

Springer Science and Business Media LLC - Tập 30 - Trang 190-203 - 2022
Angélica Vilas Boas Frota1, Breno Dias Vitorino1, Sara Miranda Almeida2, Josué Ribeiro da Silva Nunes1, Carolina Joana da Silva1
1Programa de Pós-graduação stricto sensu em Ciências Ambientais (PPGCA), Centro de Pesquisa em Limnologia, Biodiversidade e Etnobiologia do Pantanal (CELBE), Universidade do Estado de Mato Grosso (UNEMAT-Cáceres), Cáceres, Brazil
2Laboratório de Biogeografia da Conservação e Macroecologia (BIOMACRO Lab), Universidade Federal do Pará (UFPA), Belém, Brazil

Tóm tắt

Hydrological regimes in floodplains are essential to support biodiversity that depend on wetlands, and understanding how these organisms are associated to this ecosystem could be useful, as they can act as important agents for the maintenance of diversity and natural processes. We aimed to assess the bird functional responses to the Pantanal flood pulse, considering the hydrological periods and three bird groups with different degrees of wetlands dependence. For this, bird survey was conducted in the Paraguay River floodplain system, covering the hydrological periods of the 2017–2018 cycle. We considered species richness, abundance, four functional diversity measures, and functional trait composition as ecological responses. Species richness was higher for bird group with lower degree of wetland dependence, mainly in drought and ebb periods. On the other hand, we found that the higher the degree of wetland dependence by birds, the higher the differences in the functional-trait values over periods. Abundance was affected by the variation of the hydrological periods for all bird groups. Bird groups had distinct niches, and functional traits associated with waterbirds were dominant in all periods. We found that degree of wetland dependence is driving the response of birds to changes in hydrological periods. Measuring only species richness may not reflect the inherent characteristics of this ecosystem. Bird groups such as waterbirds and wetland birds showed greater functional diversity throughout the hydrological periods, evidencing the importance of the flood pulse regime for species that are highly dependent on these environments and that perform many ecological services.

Tài liệu tham khảo

Accordi IA (2010) Pesquisa e conservação de aves em áreas úmidas. In: Von Matter S, Straube FC, Accordi IA, Piacentini VQ, Cândido-Jr. JF (eds) Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e conservação. Technical Books, Rio de Janeiro, pp 189–216 Agência Nacional das Águas (2019) Hidroweb: séries históricas de estações v3.2.6 Available at https://www.snirh.gov.br/hidroweb/apresentacao. Accessed 27 June 2022 Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ (2021) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50:85–94. https://doi.org/10.1007/s13280-020-01318-8 Almeida BA, Gimenes MR, dos Anjos L (2016) Wading bird functional diversity in a floodplain: influence of habitat type and hydrological cycle. Austral Ecol 42:84–93. https://doi.org/10.1111/aec.12403 Almeida BA, Green AJ, Sebastián-González E, dos Anjos L (2018) Comparing species richness, functional diversity and functional composition of waterbird communities along environmental gradients in the Neotropics. PLoS One 13:e0200959. https://doi.org/10.1371/journal.pone.0200959 Almeida BA, Sebastián-González E, dos Anjos L, Green AJ, Botella F (2019) A functional perspective for breeding and wintering waterbird communities: temporal trends in species and trait diversity. Oikos 128:1103–1115. https://doi.org/10.1111/oik.05903 Almeida BA, Sebastián-González E, dos Anjos L, Green AJ (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshw Biol 65:2196–2210. https://doi.org/10.1111/fwb.13618 Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507 Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS (eds) (2022) Birds of the world. Cornell Laboratory of Ornithology, Ithaca. Available at https://birdsoftheworld.org/bow/home. Accessed 27 June 2022 Bolker B, R Development Core Team (2020) bbmle: tools for general maximum likelihood estimation. R package version 1.0.23.1. Available at https://CRAN.R-project.org/package=bbmle. Accessed 27 June 2022 Brasil (2017) Plano de manejo da Estação Ecológica de Taiamã. ICMBio/MMA, Brasília, DF Che X, Chen D, Zhang M, Quan Q, Møller AP, Zou F (2019) Seasonal dynamics of waterbird assembly mechanisms revealed by patterns in phylogenetic and functional diversity in a subtropical wetland. Biotropica 51:421–431. https://doi.org/10.1111/btp.12648 Davidson NC (2016) Wetland losses and the status of wetland-dependent species. In: Finlayson C, Milton G, Prentice RDN (eds) The wetland book. Springer, Dordrecht, pp 1–14 Daniel J, Polan H, Rooney RC (2021) Determinants of wetland-bird community composition in agricultural marshes of the Northern Prairie and Parkland Region. Wetlands 41:14. https://doi.org/10.1007/s13157-021-01409-6 de Deus FF, Schuchmann K-L, Arieira J, de Oliveira Tissiani AS, Marques MI (2020a) Avian beta diversity in a Neotropical wetland: the effects of flooding and vegetation structure. Wetlands 40:1513–1527. https://doi.org/10.1007/s13157-019-01240-0 de Deus FF, Schuchmann K-L, Marques MI (2020b) Seasonality in the Brazilian Pantanal influences avian functional diversity. Stud Neotrop Fauna Environ (in press). https://doi.org/10.1080/01650521.2020.1842043 Duarte LDS, Debastiani VJ, Carlucci MB, Diniz-Filho JAF (2018) Analyzing community-weighted trait means across environmental gradients: should phylogeny stay or should it go? Ecology 99:385–398. https://doi.org/10.1002/ecy.2081 Figueira JEC, Mourão FA, Coelho AS (2011) Habitat heterogeneity and climatic seasonality structure the avifauna trophic guilds in the Brazilian Pantanal wetland. Can J Zool 89:1206–1213. https://doi.org/10.1139/z11-099 Frota AVB de, Ikeda-castrillon SK, Kantek DLZ, Silva CJ (2017) Macrohabitats da Estação Ecológica de Taiamã, no contexto da Área Úmida Pantanal mato-grossense, Brasil. Bol Mus Para Emílio Goeldi Cienc Nat 12:239–254. https://doi.org/10.46357/bcnaturais.v12i2.387 Frota AVB, Vitorino BD, Silva CJ, Ikeda-Castrillon SK, Nunes JRS (2020) Bird community structure in macrohabitats of the aquatic-terrestrial transition zone in the Pantanal wetland, Brazil. Oecol Aust 24:615–634. https://doi.org/10.4257/oeco.2020.2403.07 García D (2016) Birds in ecological networks: insights from bird-plant mutualistic interactions. Ardeola 63:5–34. https://doi.org/10.13157/arla.63.1.2016.rp7 Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. https://doi.org/10.1890/03-0799 Green AJ, Elmberg J (2013) Ecosystem services provided by waterbirds. Biol Rev 89:105–122. https://doi.org/10.1111/brv.12045 Guerra A, de Oliviera Roque F, Garcia LC, Ochao-Quintero JMO, de Oliveira PTS, Guariento RD, Rosa IMD (2020) Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91:104388. https://doi.org/10.1016/j.landusepol.2019.104388 Gupta G, Khan J, Upadhyay AK, Singh NK (2020) Wetland as a sustainable reservoir of ecosystem services: prospects of threat and conservation. In: Upadhyay A, Singh R, Singh D (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_3 Jahn AE, Cueto VR, Fontana CS, Guaraldo AC, Levey DJ, Marra PP, Ryder TB (2020) Bird migration within the Neotropics. Auk 137:ukaa033. https://doi.org/10.1093/auk/ukaa033 Junk WJ, Da Silva CJ (1996) O conceito do Pulso de Inundação e suas implicações para o Pantanal de Mato Grosso. Anais do Simpósio sobre Recursos Naturais e Socioeconômicos do Pantanal: Manejo e Conservação 2:17–28 Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127 Junk WJ, Da Cunha CN, Wantzen KM, Petermann P, Strüssmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309. https://doi.org/10.1007/s00027-006-0851-4 Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22. https://doi.org/10.1002/aqc.2386 Kantek DLZ, Melo RC, Miyazaki SS, Castilheiro WFF, Santos-Filho M (2020) Aquatic birds at the Taiamã Ecological Station: seasonal variation of community structure and the importance of protected areas in the Pantanal. Biodivers Bras 10:24–40. https://doi.org/10.37002/biobrasil.v10i3.1513 Keppeler FW, Cruz DA, Dalponti G, Mormul RP (2016) The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds. Hydrobiologia 773:225–240. https://doi.org/10.1007/s10750-016-2705-y Kleyheeg E, Fiedler W, Safi K, Waldenström J, Wikelski M, van Toor ML (2019) A comprehensive model for the quantitative estimation of seed dispersal by migratory mallards. Front Ecol Evol 7:205. https://doi.org/10.3389/fevo.2019.00040 Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1 Laliberté E, Legendre P, Shipley B (2015) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0–12. https://CRAN.R-project.org/package=FD Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x Lázaro WL, Oliveira-Júnior ES, da Silva CJ, Castrillon SKI, Muniz CC (2020) Climate change reflected in one of the largest wetlands in the world: an overview of the northern Pantanal water regime. Acta Limnol Bras 32:e104. https://doi.org/10.1590/s2179-975x7619 Le S, Josse J, Husson F (2008). FactoMineR: an R package for multivariate analysis. J Stat Softw 25:i01. https://doi.org/10.18637/jss.v025.i01 Leal CG, Lennox GD, Ferraz SFB, Ferreira J, Gardner TA, Thomson JR, Berenguer E, Lees AC, Hughes RM, MacNally R, Aragão LEOC, de Brito JG, Castello L, Garrett RD, Hamada N, Juen L, Leitão RP, Louzada J, Morello TF, Moura NG, Nessimian JL, Oliveira-Junior JMB, Oliveira VHF, de Oliveira VC, Parry L, Pompeu PS, Solar RRC, Zuanon J, Barlow J (2020) Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science 370:117–121. https://doi.org/10.1126/science.aba7580 Libonati R, Dacamara CC, Peres L, Carvalho LAS, Garcia LC (2020) Rescue Brazil’s burning Pantanal wetlands. Nature 588:217–219. https://doi.org/10.1038/d41586-020-03464-1 Lorenzón RE, Ronchi-Virgolini AL, Blake JG (2020) Wetland dependency drives temporal turnover of bird species between high- and low-water years in floodplain wetlands of the Paraná River. Ecohydrology 13:e2177. https://doi.org/10.1002/eco.2179 Lovas-Kiss Á, Vincze O, Kleyheeg E, Sramkó G, Laczkó L, Fekete R, Molnár VA, Green AJ (2020) Seed mass, hardness, and phylogeny explain the potential for endozoochory by granivorous waterbirds. Ecol Evol 10:1413–1424. https://doi.org/10.1002/ece3.5997 Luck GW, Lavorel S, Mcintyre S, Lumb K (2012) Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J Anim Ecol 81:1065–1076. https://doi.org/10.1111/j.1365-2656.2012.01974.x Luck GW, Carter A, Smallbone L (2013) Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PLoS ONE 8:e63671. https://doi.org/10.1371/journal.pone.0063671 Marengo JA, Cunha AP, Cuartas LA, Leal KRD, Broedel E, Seluchi ME, Michelin CM, Flávia C, Baião DP, Ângulo EC, Almeida EK (2021) Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front Water 3:639204. https://doi.org/10.3389/frwa.2021.639204 Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x Matuoka MA, Benchimol M, Morante-Filho JC (2020) Tropical forest loss drives divergent patterns in functional diversity of forest and non-forest birds. Biotropica 52:738–748. https://doi.org/10.1111/btp.12795 Mega ER (2020) ‘Apocalyptic’ fires tropical wetland. Nature 586:20–21. https://doi.org/10.1038/d41586-020-02716-4 Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Int J Biodivers Sci Ecosyst Serv Manag 11:1–4. https://doi.org/10.1080/21513732.2015.1006250 Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177. https://doi.org/10.1016/j.tree.2012.10.004 Norris K, Terry A, Hansford JP, Turvey ST (2020) Biodiversity conservation and the earth system: mind the gap. Trends Ecol Evol 35:919–926. https://doi.org/10.1016/j.tree.2020.06.010 Oliveira MD, Calheiros DF, Padovani CR (2013) Mapeamento e descrição das áreas de ocorrência dos eventos de decoada no Pantanal. Embrapa Pantanal, Corumbá Olivo-Neto AM, da Silva CJ, Ikeda-Castrillon SK, Lazaro WL, Damasceno-Junior GA, Gris D, Pereira TDC, Sander NL (2020) Spatial distribution of single specie dominant forests of Erythrina fusca Lour. at the Taiamã Ecological Station, Pantanal, Mato Grosso, Brazil. Trop Ecol 61:248–257. https://doi.org/10.1007/s42965-020-00081-x Pacheco JF, Silveira LF, Aleixo A, Agne CE, Bencke GA, Bravo GA, Brito GRR, Cohn-Haft M, Maurício GN, Naka LN, Olmos F, Posso SR, Lees AC, Figueiredo LFA, Carrano E, Guedes RC, Cesari E, Franz I, Schunck F, Piacentini VQ (2021) Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee—second edition. Ornithol Res 29:94–105. https://doi.org/10.1007/s43388-021-00058-x Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x Pinho JB, Aragona M, Hakamada KYP, Marini MA (2017) Migration patterns and seasonal forest use by birds in the Brazilian Pantanal. Bird Conserv Int 27:371–387. https://doi.org/10.1017/s0959270916000290 Pinho JB, Marini MÂ (2014) Birds’ nesting parameters in four forest types in the Pantanal wetland. Braz J Biol 74:890–898. https://doi.org/10.1590/1519-6984.08713 Pivello VR, Vieira I, Christianini AV, Ribeiro DB, Silva ML, Berlinck CN, Melo FPL, Marengo JA, Tornquist CG, Tomas WM, Overbeck GE (2021) Understanding Brazil’s catastrophic fires: causes, consequences and policy needed to prevent future tragedies. Perspect Ecol Conserv 19:233–255. https://doi.org/10.1016/j.pecon.2021.06.005 R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Russell A, Lenth V, Buerkner P, Herve M, Love J, Singmann H, Lenth MR V (2022) Package ‘emmeans’ R topics documented 34:216–221. https://doi.org/10.1080/00031305.1980.10483031 Sekercioglu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci USA 101:18042–18047. https://doi.org/10.1073/pnas.0408049101 Setubal RB, Petry AC, Bonecker CC, Martins T, Nova CC, Figueiredo-Barros MP, Bozelli RL (2020) Biotic factors determine ecosystem processes in environments with different hydrological regimes. Freshw Biol 65:1376–1391. https://doi.org/10.1111/fwb.13506 Sherry TW, Kent CM, Sánchez NV, Şekercioğlu ÇH (2020) Insectivorous birds in the Neotropics: ecological radiations, specialization, and coexistence in species-rich communities. Auk 137:ukaa049. https://doi.org/10.1093/auk/ukaa049 Silva GG, Green AJ, Hoffman P, Weber V, Stenert C, Leonardo ÁL (2020) Seed dispersal by neotropical waterfowl depends on bird species and seasonality. Freshw Biol 66:78–88. https://doi.org/10.1111/fwb.13615 Somenzari M, Amaral PP, Cueto VR, Guaraldo ADC, Jahn AE, Lima DM, Lima PC, Lugarini C, Machado CG, Martinez J, Nascimento JLX, Pacheco JF, Paludo D, Prestes NP, Serafini PP, Silveira LF, Sousa AEBA, Sousa NA, Souza MA, Telino-Júnior WR, Whitney BM (2018) An overview of migratory birds in Brazil. Pap Avulsos Zool 58:e20185803. https://doi.org/10.11606/1807-0205/2018.58.03 Souza CM Jr, Shimbo JZ, Rosa MR, Parente LL, Alencar AA, Rudorff BFT, Hasenack H, Matsumoto M, Ferreira LG, Souza-Filho PWM, de Oliveira SW, Rocha WF, Fonseca AV, Marques CB, Diniz CG, Costa D, Monteiro D, Rosa ER, Vélez-Martin E, Weber EJ, Lenti FEB, Paternost FF, Pareyn FGC, Siqueira JV, Viera JL, Neto LCF, Saraiva MM, Sales MH, Salgado MPG, Vasconcelos R, Galano S, Mesquita VV, Azevedo T (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens 12:2735. https://doi.org/10.3390/RS12172735 Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x Thomas KPCS, Bueno ER, Teixido AL, Pinho JB (2020) Seasonality determines bird abundance, richness, and diversity among contrasting forest environments in the Northern Pantanal. Ornithol Res 28:51–56. https://doi.org/10.1007/s43388-020-00006-1 Tilman D (2001) Functional diversity. Encycl Biodivers 3:109–120. https://doi.org/10.1016/b0-12-226865-2/00132-2 Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330. https://doi.org/10.1017/S037689290200022X Van Leeuwen CHA, Lovas-Kiss Á, Ovegård M, Green AJ (2017) Great cormorants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds. Biol Lett 13:10–14. https://doi.org/10.1098/rsbl.2017.0406 Vieira BP (2017) Conceitos utilizados no Brasil para aves aquáticas. Atual Ornitol 196:41–48 Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. https://doi.org/10.1890/07-1206.1 Wantzen KM, Drago E, Silva CJ (2005) Aquatic habitats of the Upper Paraguay river-floodplain-system and parts of the Pantanal (Brazil). Ecohydrol Hydrobiol 5:107–126. https://doi.org/10.1364/CLEO_SI.2011.CTuM6 Wetlands International (2012) Waterbird population estimates, 5th edn. Wageningen, The Netherlands Whelan CJ, Wenny DG, Marquis RJ (2008) Ecosystem services provided by birds. Ann N Y Acad Sci 1134:25–60. https://doi.org/10.1196/annals.1439.003 Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470. https://doi.org/10.1046/j.1365-2699.2001.00563.x Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York Wilkinson DM, Lovas-Kiss A, Callaghan DA, Green AJ (2017) Endozoochory of large bryophyte fragments by waterbirds. Cryptogam Bryol 38:223–228. https://doi.org/10.7872/cryb/v38.iss2.2017.223 Wilman H, Belmaker J, Simpson J, de La Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027 https://doi.org/10.1890/13-1917.1