Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nanocomposite chấm carbon/ hydroxyapatit từ chất thải sinh học làm phương tiện vận chuyển thuốc cho acetaminophen
Tóm tắt
Trong công trình này, nanocomposite chấm carbon/hydroxyapatit (CD-HAP) đã được tổng hợp và sử dụng làm chất mang thuốc cho acetaminophen. Chấm carbon được tổng hợp từ một precursor chất thải sinh học, cụ thể là than vỏ mía, bằng phương pháp thủy nhiệt. Quá trình tổng hợp chấm carbon được nghiên cứu dưới bốn nhiệt độ khác nhau là 150, 170, 190 và 210 °C. Hành vi phát sáng của chấm carbon đạt tối đa tại nhiệt độ tối ưu là 190 °C. Chấm carbon có tính chất phát sáng tốt nhất được kết hợp với hydroxyapatit. Phân tích kính hiển vi điện tử truyền qua (TEM) xác nhận sự hình thành các hạt nan hình cầu với đường kính trung bình là 7,5 nm. Phân tích kính hiển vi điện tử quét phát xạ trường (FESEM) xác nhận sự hình thành hydroxyapatit hình que với đường kính trung bình là 142 nm. Phân tích nguyên tố cho thấy tỷ lệ Ca/P là 1,71, gần với tỷ lệ Ca/P là 1,67 được tìm thấy trong xương tự nhiên, cho thấy tính tương thích sinh học của nanocomposite. Phân tích nguyên tố cũng cho thấy tỷ lệ phần trăm khối lượng carbon trong CD-HAP tăng lên khi so với HAP trắng, chứng tỏ sự hình thành chấm carbon trong nanocomposite. Sự kết hợp của chấm carbon và hydroxyapatit đã cải thiện đáng kể độ phát sáng của composite, cũng như diện tích bề mặt tăng từ 41,631 đến 78,752 m2/g. Hiệu suất tải và giải phóng thuốc được đánh giá bằng cách nạp acetaminophen vào nanocomposite. CD-HAP-40 cho khả năng tải cao nhất là 48,5%. Sự giải phóng acetaminophen chậm hơn trong CD-HAP-20 và động học giải phóng phù hợp với mô hình Higuchi. Phát hiện này cho thấy acetaminophen được giải phóng qua cơ chế khuếch tán.
Từ khóa
Tài liệu tham khảo
Tiwari DG, Tiwari D, Sriwastawa B, Bhati L, Pandey S, Pandey P, K Bannerjee S (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2–11. https://doi.org/10.4103/2230-973X.96920
Jaeschke H (2015) Acetaminophen: dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig Dis 33(4):464–471. https://doi.org/10.1159/000374090
Au V, Zakaria M (2014) A study on the medication errors in the administration of N-acetylcysteine for paracetamol overdose patients in Malaysia. Hong Kong J Emerg Med 21(6):361–367. https://doi.org/10.1177/102490791402100604
Kattimani VS, Kondaka S, Lingamaneni KP (2016) Hydroxyapatite—Past, Present, and Future in Bone Regeneration. Bone Tissue Regener Insights 7. https://doi.org/10.4137/btri.S36138
Wang R, Lu K-Q, Tang Z-R, Xu Y-J (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5(8):3717–3734. https://doi.org/10.1039/C6TA08660H
Gogoi S, Kumar M, Mandal BB, Karak N (2016) A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv 6(31):26066–26076. https://doi.org/10.1039/C6RA02341J
Pardo J, Peng Z, Leblanc R (2018) Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23(2):378. https://doi.org/10.3390/molecules23020378
Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK (2018) One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing Carbohydr Polym 181:710–718. https://doi.org/10.1016/j.carbpol.2017.11.091
Ma B, Zhang S, Liu R, Qiu J, Zhao L, Wang S, Li J, Sang Y, Jiang H, Liu H (2017) Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications. Nanoscale 9(6):2162–2171. https://doi.org/10.1039/C6NR05983J
Ramesh S, Natasha AN, Tan CY, Bang LT, Niakan A, Purbolaksono J, Chandran H, Ching CY, Ramesh S, Teng WD (2015) Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods. Ceram Int 41(9, Part A):10434–10441. https://doi.org/10.1016/j.ceramint.2015.04.105
Phatai P, Futalan CM, Kamonwannasit S, Khemthong P (2019) Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template. J Sol-Gel Sci Technol 89(3):764–775. https://doi.org/10.1007/s10971-018-4910-9
Novais SMV, Silva PCR, Macedo ZS, Barbosa LB (2016) Short time and low temperature reaction between metal oxides through microwave-assisted hydrothermal method. Adv inCondensed Matter Phys 2016:1–7. https://doi.org/10.1155/2016/3745459
Yang Z, Xu W, Ji M, Xie A, Shen Y, Zhu MJEJoIC (2017) A pH‐sensitive composite with controlled multistage drug release for synergetic photothermal therapy and chemotherapy. Eur J Inorg Chem 2017(47):5621–5628. https://doi.org/10.1002/ejic.201701081
Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural chracterization of sugarcane bagasse hemicellulose. Carbohydr Polym 56:195–204. https://doi.org/10.1016/j.carbpol.2004.02.002
Sambudi NS, Cho S, Cho K (2016) Porous hollow hydroxyapatite microspheres synthesized by spray pyrolysis using a microalga template: preparation, drug delivery, and bioactivity. RSC Adv 6(49):43041–43048. https://doi.org/10.1039/C6RA03147A
Gubernat M, Tomala J, Frohs W, Fraczek-Szczypta A, Blazewicz SJJoNR (2016) De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials. J Nanopart Res 18(3):56. https://doi.org/10.1007/s11051-016-3362-9
Chen P-Y, Wang S-F, Chien RR, Tu C-S, Feng K-C, Chen C-S, Hung K-Y, Schmidt VH (2019) Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.05.144
Mehdawi IM, Young A (2013) 9 - Antibacterial composite restorative materials for dental applications. In: Vallittu P (ed) Non-metallic biomaterials for tooth repair and replacement. Woodhead Publishing, pp 270–293. https://doi.org/10.1533/9780857096432.3.270
Massad-Ivanir N, Bhunia SK, Raz N, Segal E, Jelinek R (2018) Synthesis and characterization of a nanostructured porous silicon/carbon dot-hybrid for orthogonal molecular detection. Npg Asia Mater 10:e463. https://doi.org/10.1038/am.2017.233
Reckmeier CJ, Schneider J, Susha AS, Rogach AL (2016) Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Opt Express 24(2):A312–A340. https://doi.org/10.1364/OE.24.00A312
Yu J, Liu C, Yuan K, Lu Z, Cheng Y, Li L, Zhang X, Jin P, Meng F, Liu H (2018) Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions. Nanomaterials 8(4):233. https://doi.org/10.3390/nano8040233
Li Y, Zhong X, Rider AE, Furman SA, Ostrikov K (2014) Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chem 16(5):2566–2570. https://doi.org/10.1039/C3GC42562B
Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544. https://doi.org/10.1039/C2CS15294K
Chandrasekaran A, Suresh S, Dakshanamoorthy A (2013) Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys Sci 8(32):1639–1645. https://doi.org/10.5897/IJPS2013.3990
Kim J, Sambudi N, Cho K (2019) Removal of Sr2+ using high-surface-area hydroxyapatite synthesized by non-additive in-situ precipitation J Environ Manag 231:788–794. https://doi.org/10.1016/j.jenvman.2018.10.100
DDPd Campos, Bertran CA (2009) Synthesis of carbonated hydroxyapatite nanorods in liquid crystals. Mater Res 12(3):265–268. https://doi.org/10.1590/s1516-14392009000300003
Rao L, Tang Y, Lu H, Yu S, Ding X, Xu K, Li Z, Zhang ZJ (2018) Highly photoluminescent and stable N-doped carbon dots as nanoprobes for Hg2+ detection. Nanomaterials 8 (11). https://doi.org/10.3390/nano8110900
Dutta Choudhury S, Chethodil JM, Gharat PM, PK P, Pal H (2017) pH-elicited luminescence functionalities of carbon dots: mechanistic insights. J Phys Chem Lett 8(7):1389–1395. https://doi.org/10.1021/acs.jpclett.7b00153
Zu F, Yan F-y, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9
Chhabra VA, Kaur R, Kumar N, Deep A, Rajesh C, Kim K-H (2018) Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics. RSC Adv 8(21):11446–11454. https://doi.org/10.1039/C8RA01148F
Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang S (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26(10):3104–3112. https://doi.org/10.1021/cm5003669
Nematollahzadeh A, J Abdekhodaie M, Shojaei A (2012) Submicron nanoporous polyacrylamide beads with tunable size for verapamil imprinting. J Appl Polym Sci 125(1):189–199. https://doi.org/10.1002/app.35426
shi hong S, Wu Y, Liu Y, Wu D (2017) High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomed 12:4085–4109. https://doi.org/10.2147/IJN.S132780
Ebrahimi A, Saffari M, Dehghani F, Langrish T (2016) Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose. Int J Pharm 499(1):217–227. https://doi.org/10.1016/j.ijpharm.2016.01.007
Li Y, Yang L (2015) Driving forces for drug loading in drug carriers. J Microencapsul 32(3):255–272. https://doi.org/10.3109/02652048.2015.1010459
Villicaña-Molina E, Aguilar-Reyes EA, León-Patiño CA, Nuñez-Anita RE (2019) Preparation of CEL2 glass-ceramic porous scaffolds coated with chitosan microspheres that have a drug delivery function. Int J Appl Ceram Technol 16(5):1812–1822. https://doi.org/10.1111/ijac.13196
