Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition

Song Qin1, Kang Wang1, Fengzheng Gao2, Baosheng Ge3, Hongli Cui1, Wenjun Li1
1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
2Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, Netherlands
3College of Chemical Engineering and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China

Tóm tắt

Abstract

Microalgal biomass represents a sustainable bioresource for various applications, such as food, nutraceuticals, pharmaceuticals, feed, and other bio-based products. For decades, its mass production has attracted widespread attention and interest. The process of microalgal biomass production involves several techniques, mainly cultivation, harvesting, drying, and pollution control. These techniques are often designed and optimized to meet optimal growth conditions for microalgae and to produce high-quality biomass at acceptable cost. Importantly, mass production techniques are important for producing a commercial product in sufficient amounts. However, it should not be overlooked that microalgal biotechnology still faces challenges, in particular the high cost of production, the lack of knowledge about biological contaminants and the challenge of loss of active ingredients during biomass production. These issues involve the research and development of low-cost, standardized, industrial-scale production equipment and the optimization of production processes, as well as the urgent need to increase the research on biological contaminants and microalgal active ingredients. This review systematically examines the global development of microalgal biotechnology for biomass production, with emphasis on the techniques of cultivation, harvesting, drying and control of biological contaminants, and discusses the challenges and strategies to further improve quality and reduce costs. Moreover, the current status of biomass production of some biotechnologically important species has been summarized, and the importance of improving microalgae-related standards for their commercial applications is noted.

Từ khóa


Tài liệu tham khảo

García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10(5):1017–24.

Masojídek J, Torzillo G. Mass cultivation of freshwater microalgae. In: Reference module in earth systems and environmental sciences. Amsterdam: Elsevier; 2014. https://doi.org/10.1016/B978-0-12-409548-9.09373-8.

Li H, Su L, Chen S, Zhao L, Wang H, Ding F, et al. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules. 2018;23(2):508.

Hur SB, Bae JH, Youn J-Y, Jo MJ. KMMCC-Korea marine microalgae culture center: list of strains, 2nd edition. Algae. 2015;30:S1–188.

Ponnuswamy I, Madhavan S, Shabudeen S. Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. Int J Bio-Sci Bio-Technol. 2013;5(2):17–26.

Ciani M, Lippolis A, Fava F, Rodolfi L, Niccolai A, Tredici MR. Microbes: food for the future. Foods. 2021;10(5):971.

Pereira AG, Jimenez-Lopez C, Fraga M, Lourenço-Lopes C, García-Oliveira P, Lorenzo JM, et al. Extraction, properties, and applications of bioactive compounds obtained from microalgae. Curr Pharm Design. 2020;26(16):1929–50.

Burlew JS. Current status of the large-scale culture of algae. In: Burlew JS, editor. Algal culture from laboratory to pilot plant. Washington: Carnegie Institute of Washington Publication; 1953. p. 3–23.

Gummert F, Meffert M-E, Stratmann H. Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew JS, editor. Algal culture from laboratory to pilot plant. Washington: Carnegie Institute of Washington Publication; 1953. p. 166–76.

de Andrade CJ, de Andrade LM. An overview on the application of genus Chlorella in biotechnological processes. J Adv Res Biotechnol. 2017;2:1–9.

Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14(11):421–6.

Soong P. Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder C, editors. Algae biomass. Amsterdam: Elsevier/North-Holland Biomedical Press; 1980. p. 9–20.

Pirie NW. The Spirulina algae. In: Pirie NW, editor. Food protein sources. New York: Cambridge University Press; 1975. p. 33–9.

Moulton T, Borowitzka L, Vincent D. The mass culture of Dunaliella salina for β-carotene: from pilot plant to production plant. In: Ragan MA, Bird CJ, editors. Twelfth international seaweed symposium. Developments in Hydrobiology. Dordrecht: Springer; 1987. p. 99–105.

Hu I-C. Production of potential coproducts from microalgae. In: Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y, editors. Biofuels from algae. New York: Elsevier; 2019. p. 345–58.

Oslan SNH, Oslan SN, Mohamad R, Tan JS, Yusoff AH, Matanjun P, et al. Bioprocess strategy of Haematococcus lacustris for biomass and astaxanthin production keys to commercialization: perspective and future direction. Fermentation. 2022;8(4):179.

Tang DYY, Khoo KS, Chew KW, Tao Y, Ho S-H, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol. 2020;304: 122997.

Wong JF, Hong HJ, Foo SC, Yap MKK, Tan JW. A review on current and future advancements for commercialized microalgae species. Food Sci Hum Well. 2022;11(5):1156–70.

Jin H, Chuai W, Li K, Hou G, Wu M, Chen J, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production. Biotechnol Bioeng. 2021;118(10):4138–51.

Jin H, Zhang H, Zhou Z, Li K, Hou G, Xu Q, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol Bioeng. 2020;117(1):96–108.

Xie Y, Zhang Z, Ma R, Liu X, Miao M, Ho S-H, et al. High-cell-density heterotrophic cultivation of microalga Chlorella sorokiniana FZU60 for achieving ultra-high lutein production efficiency. Bioresour Technol. 2022;365: 128130.

Chen J, Wang Y, Benemann JR, Zhang X, Hu H, Qin S. Microalgal industry in China: challenges and prospects. J Appl Phycol. 2016;28:715–25.

Olaizola M. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol. 2000;12(3–5):499–506.

Suzuki K. Large-scale cultivation of Euglena. In: Schwartzbach S, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Cham: Springer; 2017. p. 285–93.

Koyande AK, Chew KW, Rambabu K, Tao Y, Chu DT, Show PL. Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Well. 2019;8(1):16–24.

Peter AP, Chew KW, Pandey A, Lau SY, Rajendran S, Ting H, et al. Artificial intelligence model for monitoring biomass growth in semi-batch Chlorella vulgaris cultivation. Fuel. 2023;333: 126438.

Molino A, Larocca V, Di Sanzo G, Martino M, Casella P, Marino T, et al. Extraction of bioactive compounds using supercritical carbon dioxide. Molecules. 2019;24(4):782.

Li F, Zhang N, Zhang Y, Lian Q, Qin C, Qian Z, et al. NaCl promotes the efficient formation of Haematococcus pluvialis nonmotile cells under phosphorus deficiency. Mar Drugs. 2021;19(6):337.

Kottuparambil S, Thankamony RL, Agusti S. Euglena as a potential natural source of value-added metabolites. A review. Algal Res. 2019;37:154–9.

Gao FZ, Ge BS, Xiang WZ, Qin S. Development of microalgal industries in the past 60 years due to biotechnological research in China: a review. Sci Sin Vitae. 2020;51:26–39.

Behera B, Selvam M, Paramasivan B. Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresour Technol. 2022;351: 127038.

Behera B, Unpaprom Y, Ramaraj R, Maniam BP, Govindan N, Paramasivan B. Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae. Renew Sust Energy Rev. 2022;148: 111270.

Masojidek J, Prasil O. The development of microalgal biotechnology in the Czech Republic. J Ind Microbiol Biotechnol. 2010;37(12):1307–17.

Clagnan E, Dell’Orto M, Štěrbová K, Grivalský T, Manoel JAC, Masojídek J, et al. Impact of photobioreactor design on microalgae-bacteria communities grown on wastewater: differences between thin-layer cascade and thin-layer raceway ponds. Bioresour Technol. 2023;374: 128781.

Chuka-ogwude D, Ogbonna JC, Moheimani NR. Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate. Algal Res. 2021;60: 102509.

de Marchin T, Erpicum M, Franck F. Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium. J Biotechnol. 2015;215:2–12.

Chaumont D. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol. 1993;5:593–604.

James CM, Al-Khars AM. An intensive continuous culture system using tubular photobioreactors for producing microalgae. Aquaculture. 1990;87(3–4):381–93.

Miyamoto K, Wable O, Benemann JR. Vertical tubular reactor for microalgae cultivation. Biotechnol Lett. 1988;10:703–8.

Tamiya H, Hase E, Shibata K, Mituya A, Iwamura T, Nihei T, et al. Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature. In: Burlew JS, editor., et al., Algal culture from laboratory to pilot plant. Washington: Carnegie Institute of Washington Publication; 1953. p. 204–32.

Anderson DB, Eakin DE. A process for the production of polysaccharides from microalgae. Biotechnol Bioeng Symp. 1986;15(15):533–47.

Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R. A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng. 1993;42(7):891–8.

Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepúlveda C, et al. Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R, editors., et al., Microalgae-based biofuels and bioproducts. New York: Elsevier Ltd; 2017. p. 1–44.

Carone M, Alpe D, Costantino V, Derossi C, Occhipinti A, Zanetti M, et al. Design and characterization of a new pressurized flat panel photobioreactor for microalgae cultivation and CO2 bio-fixation. Chemosphere. 2022;307: 135755.

Gifuni I, Pollio A, Marzocchella A, Olivieri G. New ultra-flat photobioreactor for intensive microalgal production: the effect of light irradiance. Algal Res. 2018;34:134–42.

Deprá MC, Mérida LGR, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des. 2019;144:1–10.

Day JP, Edwards AP, Rodgers GA. Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol. 1991;38(2–3):245–9.

da Silva TL, Moniz P, Silva C, Reis A. The role of heterotrophic microalgae in waste conversion to biofuels and bioproducts. Processes. 2021;9(7):1090.

Ivušić F, Šantek B. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioproc Biosyst Eng. 2015;38:1103–12.

Ye Y, Huang Y, Xia A, Fu Q, Liao Q, Zeng W, et al. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Bioresour Technol. 2018;270:80–7.

Bo Y, Chu R, Sun D, Deng X, Zhou C, Yan X, et al. Mixotrophic culture of bait microalgae for biomass and nutrients accumulation and their synergistic carbon metabolism. Bioresour Technol. 2023;367: 128301.

Ogbonna JC, Masui H, Tanaka H. Sequential heterotrophic/autotrophic cultivation—an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol. 1997;9:359–66.

Fan J, Huang J, Li Y, Han F, Wang J, Li X, et al. Sequential heterotrophy–dilution–photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour Technol. 2012;112:206–11.

Wan M, Zhang Z, Wang J, Huang J, Fan J, Yu A, et al. Sequential heterotrophy–dilution–photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresour Technol. 2015;198:557–63.

Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM. Harvesting, thickening and dewatering microalgae biomass. In: Borowitzka MA, Moheimani NR, editors. Algae for biofuels and energy. Dordrecht: Springer; 2013. p. 165–85.

Milledge JJ, Heaven S. Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res. 2011;1(1):17–24.

Gerardo ML, Van Den Hende S, Vervaeren H, Coward T, Skill SC. Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res. 2015;11:248–62.

Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio. 2013;12:165–78.

Singh G, Patidar SK. Microalgae harvesting techniques: a review. J Environ Manag. 2018;217:499–508.

Karst DJ, Ramer K, Hughes EH, Jiang C, Jacobs PJ, Mitchelson FG. Modulation of transmembrane pressure in manufacturing scale tangential flow filtration N-1 perfusion seed culture. Biotechnol Progr. 2020;36(6): e3040.

Ndikubwimana T, Zeng X, Murwanashyaka T, Manirafasha E, He N, Shao W, et al. Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels. 2016;9(1):1–11.

Sahoo NK, Gupta SK, Rawat I, Ansari FA, Singh P, Naik SN, et al. Sustainable dewatering and drying of self-flocculating microalgae and study of cake properties. J Clean Prod. 2017;159:248–56.

Lavoie A, de la Noüe J. Harvesting microalgae with chitosan. J World Maricult Soc. 1983;14(1–4):685–94.

Morales J, de la Noüe J, Picard G. Harvesting marine microalgae species by chitosan flocculation. Aquacult Eng. 1985;4(4):257–70.

Mubarak M, Shaija A, Suchithra TV. Flocculation: an effective way to harvest microalgae for biodiesel production. J Environ Chem Eng. 2019;7(4): 103221.

Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Grima EM. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol. 2012;118:102–10.

Larkum AWD, Ross IL, Kruse O, Hankamer B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012;30(4):198–205.

Eldridge R, Hill DRA, Gladman BR. A comparative study of the coagulation behaviour of marine microalgae. J Appl Phycol. 2012;24:1667–79.

Salim S, Vermuë MH, Wijffels RH. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol. 2012;118:49–55.

He J, Ding W, Han W, Chen Y, Jin W, Zhou X. A bacterial strain Citrobacter W4 facilitates the bio-flocculation of wastewater cultured microalgae Chlorella pyrenoidosa. Sci Total Environ. 2022;806: 151336.

Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol. 2019;272:34–9.

Al Hattab M, Ghaly A, Hammouda A. Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl. 2015;5(2):1000154.

Esteves AF, Almeida CJ, Gonçalves AL, Pires JC. Microalgae harvesting techniques. In: Jacob-Lopes E, Maroneze MM, Queiroz MI, Zepka LQ, editors. Handbook of microalgae-based processes and products. New York: Elsevier; 2020. p. 225–81.

Rao NRH, Beyer VP, Henderson RK, Thielemans W, Muylaert K. Microalgae harvesting using flocculation and dissolved air flotation: Selecting the right vessel for lab-scale experiments. Bioresour Technol. 2023;374: 128786.

Min C, Kim JE, Shon HK, Kim S-H. Low energy resonance vibration submerged membrane system for microalgae harvesting: performance and feasibility. Desalination. 2022;539: 115895.

Hapońska M, Clavero E, Salvadó J, Farriol X, Torras C. Pilot scale dewatering of Chlorella sorokiniana and Dunaliella tertiolecta by sedimentation followed by dynamic filtration. Algal Res. 2018;33:118–24.

Schmid B, Navalho S, Schulze PSC, Van De Walle S, Van Royen G, Schüler LM, et al. Drying microalgae using an industrial solar dryer: a biomass quality assessment. Foods. 2022;11(13):1873.

Silva JPS, Veloso CRR, de Souza Barrozo MA, Vieira LGM. Indirect solar drying of Spirulina platensis and the effect of operating conditions on product quality. Algal Res. 2021;60: 102521.

Alhanif M, Kumoro AC, Wardhani DH. Mass transfer, energy utilization, physical and nutritional properties evaluations during drying of papaya (Carica papaya L.) seeds at low to moderate temperatures. Arab J Sci Eng. 2022;47:1–23.

Argo BD, Ubaidillah U. Thin-layer drying of cassava chips in multipurpose convective tray dryer: energy and exergy analyses. J Mech Sci Technol. 2020;34:435–42.

Hosseinizand H, Lim CJ, Webb E, Sokhansanj S. Economic analysis of drying microalgae Chlorella in a conveyor belt dryer with recycled heat from a power plant. Appl Therm Eng. 2017;124:525–32.

Nirmaan AMC, Rohitha Prasantha BD, Peiris BL. Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties. Chem Biol Technol Agric. 2020;7:1.

Peng Q, Khan NA, Wang Z, Yu P. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J Dairy Sci. 2014;97(1):446–57.

Chen C, Yang S, Bu X. Microwave drying effect on pyrolysis characteristics and kinetics of microalgae. BioEnergy Res. 2019;12:400–8.

Lopes EJ, Zepka LQ, Pinto LAA, Queiroz MI. Characteristics of thin-layer drying of the cyanobacterium Aphanothece microscopica Nägeli. Chem Eng Process. 2007;46(1):63–9.

Oliveira EG, Duarte JH, Moraes K, Crexi VT, Pinto LA. Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. Int J Food Sci Technol. 2010;45(8):1572–8.

Muhammad G, Alam MA, Xiong W, Lv Y, Xu J-L. Microalgae biomass production: an overview of dynamic operational methods. In: Alam MA, Xu J-L, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Dordrecht: Springer; 2020. p. 415–32.

Orset S, Leach GC, Morais R, Young AJ. Spray-drying of the microalga Dunaliella salina: effects on β-carotene content and isomer composition. J Agric Food Chem. 1999;47(11):4782–90.

Oliveira EG, Rosa GS, Moraes MA, Pinto LAA. Characterization of thin layer drying of Spirulina platensis utilizing perpendicular air flow. Bioresour Technol. 2009;100(3):1297–303.

Castejón N, Luna P, Señoráns FJ. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: effect on polyunsaturated fatty acid composition. LWT-Food Sci Technol. 2021;148: 111789.

Zhang H, Gong T, Li J, Pan B, Hu Q, Duan M, et al. Study on the effect of spray drying process on the quality of microalgal biomass: a comprehensive biocomposition analysis of spray-dried S. acuminatus biomass. BioEnergy Res. 2022;15:320–33.

Liapis AI, Bruttini R. Freeze drying. In: Mujumdar AS, editor. Handbook of industrial drying. Boca Raton: CRC Press; 2021. p. 309–43.

Becker EW. Microalgae for human and animal nutrition. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: applied phycology and biotechnology. Hoboken: Wiley; 2013. p. 461–503.

Ahmed F, Li Y, Fanning K, Netzel M, Schenk PM. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Res Int. 2015;74:231–6.

Foo SC, Khong NMH, Yusoff FM. Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Res. 2020;51: 102061.

Chen C-L, Chang J-S, Lee D-J. Dewatering and drying methods for microalgae. Dry Technol. 2015;33(4):443–54.

Ljubic A, Safafar H, Jacobsen C. Recovery of microalgal biomass and metabolites from homogenized, swirl flash-dried microalgae. J Appl Phycol. 2019;31:2355–63.

Seghiri R, Legrand J, Hsissou R, Essamri A. Comparative study of the impact of conventional and unconventional drying processes on phycobiliproteins from Arthrospira platensis. Algal Res. 2021;53: 102165.

Hosseinizand H, Sokhansanj S, Lim CJ. Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Dry Technol. 2018;36(9):1049–60.

Amin M, Chetpattananondh P, Cheng C-K, Sami SK, Khan MN. Drying characteristics and impacts on quality of marine Chlorella sp. biomass and extracts for fuel applications. J Environ Chem Eng. 2021;9(6): 106386.

Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. J Food Process Pres. 2022;46(5): e16594.

Morowvat MH, Ghasemi Y. Spray-drying microencapsulation of β-carotene contents in powdered Dunaliella salina biomass. Int J Pharm Clin Res. 2016;8(11):1533–6.

Zhao X, Liu H, Zhang X, Zhang G, Zhu H. Astaxanthin from Haematococcus pluvialis microencapsulated by spray drying: characterization and antioxidant activity. J Am Oil Chem Soc. 2019;96(1):93–102.

Shi H, Zhang M, Yi S. Effects of ultrasonic impregnation pretreatment on drying characteristics of Nostoc sphaeroides Kützing. Dry Technol. 2020;38(8):1051–61.

Yuan D, Yao M, Wang L, Li Y, Gong Y, Hu Q. Effect of recycling the culture medium on biodiversity and population dynamics of bio-contaminants in Spirulina platensis mass culture systems. Algal Res. 2019;44: 101718.

Yuan D, Zhan X, Wang M, Wang X, Feng W, Gong Y, et al. Biodiversity and distribution of microzooplankton in Spirulina (Arthrospira) platensis mass cultures throughout China. Algal Res. 2018;30:38–49.

Abou-Shanab RA, Singh M, Rivera-Cruz A, Power G, Bagby-Moon T, Das K. Effect of Brachionus rubens on the growth characteristics of various species of microalgae. Electron J Biotechnol. 2016;22:68–74.

Yuan D, Liu J, Wang H, Hu Q, Gong Y. Biodiversity and seasonal variation of microzooplankton contaminating pilot-scale cultures of Chlorella sorokiniana. Algal Res. 2022;64: 102722.

Pulgarin A, Decker J, Chen J, Giannakis S, Ludwig C, Refardt D, et al. Effective removal of the rotifer Brachionus calyciflorus from a Chlorella vulgaris microalgal culture by homogeneous solar photo-Fenton at neutral pH. Water Res. 2022;226: 119301.

Chen Z, Lei X, Zhang B, Yang L, Zhang H, Zhang J, et al. First report of Pseudobodo sp., a new pathogen for a potential energy-producing algae: Chlorella vulgaris cultures. PLoS ONE. 2014;9(3): e89571.

Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia. 1983;105:95–113.

Mu RM, Fan ZQ, Pei HY, Yuan XL, Liu SX, Wang XR. Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci. 2007;19:1336–40.

Liao C, Liu X, Liu R, Shan L. Two novel algicidal isolates kill Chlorella pyrenoidosa by inhibiting their host antioxidase activities. Appl Biochem Biotechnol. 2015;177:567–76.

Jiang X, Ren C, Hu C, Zhao Z. Isolation and algicidal characterization of Bowmanella denitrificans S088 against Chlorella vulgaris. World J Microbiol Biotechnol. 2014;30:621–9.

Bai MD, Hsu HJ, Wu SI, Lu WC, Wan HP, Chen JC. Cell disruption of Chlorella vulgaris using active extracellular substances from Bacillus thuringiensis ITRI-G1 is a programmed cell death event. J Appl Phycol. 2017;29:1307–15.

Lu Q, Zhou X, Liu R, Shi G, Zheng N, Gao G, et al. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. Ecotox Environ Safe. 2023;249: 114451.

Yang BJ, Xiang WZ, Jin XJ, Chen ZS, Wang L, Wu HB. Isolation and identification of an algicidal bacterium CBA02 and its algae-lysing characteristics. Biotechnol Bull. 2020;36(11):55.

Wang M, Yuan W. Bacterial lysis of microalgal cells. J Sustain Bioenergy Syst. 2014;4(04):52205.

Zhao N, Yi L, Ren S, Yin Q, Xiang W, Zhang X, et al. Algicidal interaction between Paenibacillus polymyxa MEZ6 and microalgae. J Appl Microbiol. 2022;133(2):646–55.

Borowitzka MA. Algae as food. In: Wood BJB, editor. Microbiology of fermented foods. London: Blackie Academic and Professional; 1998. p. 585–602.

Dawidziuk A, Popiel D, Luboinska M, Grzebyk M, Wisniewski M, Koczyk G. Assessing contamination of microalgal astaxanthin producer Haematococcus cultures with high-resolution melting curve analysis. J Appl Genet. 2017;58:277–85.

Yu BS, Lee SY, Sim SJ. Effective contamination control strategies facilitating axenic cultivation of Haematococcus pluvialis: risks and challenges. Bioresour Technol. 2022;344: 126289.

Sheng Y, Wu Z, Xu S, Wang Y. Isolation and identification of a large green alga virus (Chlorella virus XW01) of mimiviridae and its virophage (Chlorella virus virophage SW01) by using unicellular green algal cultures. J Virol. 2022;96(7):e02114-e2121.

Agarkova IV, Lane LC, Dunigan DD, Quispe CF, Duncan GA, Milrot E, et al. Identification of a chlorovirus PBCV-1 protein involved in degrading the host cell wall during virus infection. Viruses. 2021;13(5):782.

Quispe CF, Esmael A, Sonderman O, McQuinn M, Agarkova I, Battah M, et al. Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology. 2017;500:103–13.

Shao Q, Agarkova IV, Noel EA, Dunigan DD, Liu Y, Wang A, et al. Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1. Nat Commun. 2022;13(1):6476.

Zhao L, Geng X, Zhang Y, Hu X, Zhang X, Xu H, et al. How do microalgae in response to biological pollution treat in cultivation? A case study investigating microalgal defense against ciliate predator Euplotes vannus. Environ Sci Pollut Res. 2022;29(21):32171–9.

Yun J-H, Cho D-H, Lee B, Kim H-S, Chang YK. Application of biosurfactant from Bacillus subtilis C9 for controlling cladoceran grazers in algal cultivation systems. Sci Rep. 2018;8(1):5365.

Wang H, Zhang W, Chen L, Wang J, Liu T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol. 2013;128:745–50.

Cho D-H, Choi J-W, Kang Z, Kim B-H, Oh H-M, Kim H-S, et al. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci Rep. 2017;7(1):1979.

Goździejewska AM, Kruk M. Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs. Sci Rep. 2022;12(1):3938.

Wang M, Chen S, Zhou W, Yuan W, Wang D. Algal cell lysis by bacteria: a review and comparison to conventional methods. Algal Res. 2020;46: 101794.

Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, et al. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae. 2007;6(6):799–810.

Jeong S-Y, Ishida K, Ito Y, Okada S, Murakami M. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 2003;44(43):8005–7.

Liao C, Liu X. High-cell-density cultivation and algicidal activity assays of a novel algicidal bacterium to control algal bloom caused by water eutrophication. Water Air Soil Poll. 2014;225:1–8.

Safferman RS, Morris M-E. Algal virus: isolation. Science. 1963;140(3567):679–80.

Gibbs A, Skotnicki AH, Gardiner JE, Walker ES, Hollings M. A tobamovirus of a green alga. Virology. 1975;64(2):571–4.

Tan K, Huang Z, Ji R, Qiu Y, Wang Z, Liu J. A review of allelopathy on microalgae. Microbiology. 2019;165(6):587–92.

Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model. 2007;208(2–4):205–14.

Lam TP, Lee T-M, Chen C-Y, Chang J-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2018;252:180–7.

Moreno-Garrido I, Canavate JP. Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquacult Eng. 2001;24(2):107–14.

Yang Z, Kong F, Shi X, Yang J. Effects of Branchionus calyciflorus culture media filtrate on Microcystis aeruginosa, Scenedesmus obliquus and Chlorella vulgaris colony formation and growth. J Appl Ecol. 2005;16(6):1138–41.

Xu R, Zhang L, Liu J. The natural triterpenoid toosendanin as a potential control agent of the ciliate Stylonychia mytilus in microalgal cultures. J Appl Phycol. 2019;31:41–8.

Huang Y, Li L, Liu J, Lin W. Botanical pesticides as potential rotifer-control agents in microalgal mass culture. Algal Res. 2014;4:62–9.

Hallegraeff GM, Valentine JP, Marshall J-A, Bolch CJ. Temperature tolerances of toxic dinoflagellate cysts: application to the treatment of ships’ ballast water. Aquat Ecol. 1997;31:47–52.

Galès A, Triplet S, Geoffroy T, Roques C, Carré C, Le Floc’h E, et al. Control of the pH for marine microalgae polycultures: a key point for CO2 fixation improvement in intensive cultures. J CO2 Util. 2020;38:187–93.

Becher EW. Microalgae biotechnology microbiology. Cambridge: Cambridge University Press; 1994.

Sellner KG, Doucette GJ, Kirkpatrick GJ. Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol. 2003;30:383–406.