Biotechnological use of Candida yeasts in the food industry: A review

Fungal Biology Reviews - Tập 31 - Trang 185-198 - 2017
Marek Kieliszek1, Anna M. Kot1, Anna Bzducha-Wróbel1, Stanisław BŁażejak1, Iwona Gientka1, Agnieszka Kurcz1
1Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland

Tài liệu tham khảo

Abonama, 2014, Production of citric acid by Candida lipolytica under fermentation conditions using a Plackett-Burman design, Am. J. Food Nutr., 2, 43 Adamczak, 2003, Synthesis, properties, and application of lipase from Candida antarctica for high yield monoacylglycerol biosynthesis, Pol. J. Food Nutr., 12/53, 3 Aguilar-Uscanga, 2003, A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation, Lett. Appl. Microbiol., 37, 268, 10.1046/j.1472-765X.2003.01394.x Anastassiadis, 2006, Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation, Electron. J. Biotechnol., 9, 26, 10.2225/vol9-issue1-fulltext-5 Anastassiadis, 2005, Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio, World J. Microbiol. Biotechnol., 21.5, 695, 10.1007/s11274-004-3850-4 Antonucci, 2001, Selectivity in citric acid production by Yarrowia lipolytica, Enzyme Microb. Technol., 28, 189, 10.1016/S0141-0229(00)00288-X Arutchelvi, 2008, Mannosylerythritol lipids: a review, J. Ind. Microbiol. Biotechnol., 35, 1559, 10.1007/s10295-008-0460-4 Barnett, 2004, A history of research on yeasts 8: taxonomy, Yeast, 21, 1141, 10.1002/yea.1154 Barnett, 2000, 40 Bernt, 1996, Erythritol: a review of biological and toxicological studies, Regul. Toxicol. Pharmacol., 24, 191, 10.1006/rtph.1996.0098 Błażejak, 2003, Badanie zdolności wiązania magnezu przez drożdże paszowe Candida utilis ATCC 9950 w warunkach hodowli wgłębnej, Acta Sci. Pol. Technol. Aliment., 2, 109 Bowman, 2006, The structure and synthesis of the fungal cell wall, Bioessays, 28, 799, 10.1002/bies.20441 Brandt, 2012, Recent taxonomic developments with Candida and other opportunistic yeasts, Curr. Fungal Infect. Rep., 6, 170, 10.1007/s12281-012-0094-x Bucková, 2002, Detection of damage to DNA and antioxidative activity of yeast polysaccharides at the DNA-modified screen-printed electrode, Talanta, 56, 939, 10.1016/S0039-9140(01)00654-3 Bzducha-Wróbel, 2012, Cell wall structure of selected yeast species as a factor of magnesium binding ability, Eur. Food Res. Technol., 235, 355, 10.1007/s00217-012-1761-4 Bzducha-Wróbel, 2015, Biosynthesis of β(1,3)/(1,6)-glucans of cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol, Eur. Food Res. Technol., 240, 1023, 10.1007/s00217-014-2406-6 Bzducha-Wróbel, 2013, Chemical composition of the cell wall of probiotic and brewer's yeast in response to cultivation medium with glycerol as a carbon source, Eur. Food Res. Technol., 237, 489, 10.1007/s00217-013-2016-8 Chen, 2007, Medicinal importance of fungal β-(1 → 3), (1 → 6)-glucans, Mycol. Res., 111, 635, 10.1016/j.mycres.2007.02.011 Chiura, 1982, A glucomannan as an extracellular product of Candida utilis II. Structure of a glucomannan: characterization of oligosaccharides obtained by partial hydrolysis, Agric. Biol. Chem., 46, 1733, 10.1271/bbb1961.46.1733 Choi, 2000, Production of xylitol in cell recycle fermentations of Candida tropicalis, Biotechnol. Lett., 22, 1625, 10.1023/A:1005693427389 Chorvatovičová, 1999, Protective effect of the yeast glucomannan against cyclophosphamide-induced mutagen, Mutat. Res., 444, 117, 10.1016/S1383-5718(99)00102-3 Cortés-Sánchez, 2013, Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives, Microbiol. Res., 168, 22, 10.1016/j.micres.2012.07.002 Corzo, 1999, Production and characteristics of the lipase from Yarrowia lipolytica 681, Bioresour. Technol., 70, 173, 10.1016/S0960-8524(99)00024-3 Crolla, 2001, Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin, J. Biotechnol., 89, 27, 10.1016/S0168-1656(01)00278-4 Dalmau, 2000, Effect of different carbon sources on lipase production by Candida rugosa, Enzyme Microb. Technol., 26, 657, 10.1016/S0141-0229(00)00156-3 Desai, 1997, Microbial production of surfactants and their commercial potential, Microbiol. Mol. Rev., 61, 47, 10.1128/.61.1.47-64.1997 Dhillon, 2011, Recent advances in citric acid bioproduction and recovery, Food Bioprocess Technol., 4, 505, 10.1007/s11947-010-0399-0 Domingues, 2010, Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation, Bioeng. Bugs, 1, 164, 10.4161/bbug.1.3.10619 Drábiková, 2009, Glucomannan reduces neutrophil free radical production in vitro and in rats with adjuvant arthritis, Pharmacol. Res., 59, 399, 10.1016/j.phrs.2009.02.003 Eryasar, 2016, Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis, 3 Biotech., 6, 202, 10.1007/s13205-016-0521-8 Fadiloğlu, 2002, Effects of carbon and nitrogen sources on lipase production by Candida rugosa, Turk. J. Eng. Env. Sci., 26, 249 Fickers, 2005, Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications, FEMS Yeast Res., 5, 527, 10.1016/j.femsyr.2004.09.004 Gientka, 2015, Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical compositions and functional properties – review, Acta Sci. Pol. Technol. Aliment., 14, 283, 10.17306/J.AFS.2015.4.29 Gientka, 2016, The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources, Electron. J. Biotechnol., 22, 31, 10.1016/j.ejbt.2016.02.008 Gientka, 2014, Selekcja szczepów drożdży z rodzajów Candida oraz Cryptococcus w kierunku biosyntezy zewnątrzkomórkowych polimerów w podłożach z sacharozą, ZPPNR, 577, 33 Gonçalves, 2013, Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14, Bioresour. Technol., 146, 261, 10.1016/j.biortech.2013.07.075 Grzebisz, 2011, Magnesium–food and human health, J. Elem., 16, 299 Gudmundsdottir, 2015, Synthesis of reversed structured triacylglycerols possessing EPA and DHA at their terminal positions, Tetrahedron, 71, 8544, 10.1016/j.tet.2015.09.034 Gusmao, 2010, Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant, World J. Microbiol. Biotechnol., 26, 1683, 10.1007/s11274-010-0346-2 Hájková, 2009, Soluble glucomannan isolated from Candida utilis primes blood phagocytes, Carbohydr. Res., 344, 2036, 10.1016/j.carres.2009.06.034 Hernández-Pérez, 2016, Biochemical conversion of sugarcane straw hemicellulosic hydrolysate supplemented with co-substrates for xylitol production, Bioresour. Technol., 200, 1085, 10.1016/j.biortech.2015.11.036 Jach, 2015, Dietary supplements based on the yeast biomass, Curr. Top. Nutraceutical Res., 13, 83 Jamai, 2007, Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase, Bioresour. Technol., 98, 2765, 10.1016/j.biortech.2006.09.057 Jones, 1993, Ethanol production from lactose by extractive fermentation, Biotechnol. Lett., 15, 871, 10.1007/BF00180157 Kadam, 1997, Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass, Appl. Microbiol. Biotechnol., 48, 709, 10.1007/s002530051120 Kaewthong, 2005, Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase, Process Biochem., 40, 1525, 10.1016/j.procbio.2003.12.002 Kapteyn, 1999, The contribution of cell wall proteins to the organization of the yeast cell wall, Biochim. Biophys. Acta, 1426, 373, 10.1016/S0304-4165(98)00137-8 Kath, 1999, Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae, Angew. Makromol. Chem., 268, 59, 10.1002/(SICI)1522-9505(19990701)268:1<59::AID-APMC59>3.0.CO;2-F Kieliszek, 2013, Selenium: significance, and outlook for supplementation, Nutrition, 29, 713, 10.1016/j.nut.2012.11.012 Kieliszek, 2015, Accumulation and metabolism of selenium by yeast cell, Appl. Microbiol. Biotechnol., 99, 5373, 10.1007/s00253-015-6650-x Kieliszek, 2016, Current knowledge on the importance of selenium in food for living organisms: a review, Molecules, 21, 609, 10.3390/molecules21050609 Kieliszek, 2017, Binding and conversion of selenium in Candida utilis ATCC 9950 yeasts in bioreactor culture, Molecules, 22, 352, 10.3390/molecules22030352 Kieliszek, 2015, Influence of selenium content in the culture medium on protein profile of yeast cells Candida utilis ATCC 9950, Oxid. Med. Cell. Longev., 2015, 10.1155/2015/659750 Kieliszek, 2016, Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast, J. Trace Elem. Med. Biol., 35, 90, 10.1016/j.jtemb.2016.01.014 Kim, 2002, Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica, Biotechnol. Lett., 24, 225, 10.1023/A:1014100422857 Kim, 1999, Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis, J. Ind. Microbiol. Biotechnol., 22, 181, 10.1038/sj.jim.2900626 Kim, 2015, Pretreatment of sugarcane molasses and citric acid production by Candida zeylanoides, Microbiol. Biotechnol. Lett., 43, 164, 10.4014/mbl.1503.03006 Kim, 2006, Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae, Enzyme Microb. Technol., 39, 496, 10.1016/j.enzmictec.2005.12.020 Kim, 2003, Xylitol production by Candida tropicalis in a chemically defined medium, Biotechnol. Lett., 25, 2085, 10.1023/B:BILE.0000007069.74876.0c Klis, 2002, Dynamics of cell wall structure in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 26, 239, 10.1111/j.1574-6976.2002.tb00613.x Kogan, 2007, Role of yeast cell wall polysaccharides in pig nutrition and health protection, Livest. Sci., 109, 161, 10.1016/j.livsci.2007.01.134 Koh, 2003, Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae, Biotechnol. Lett., 25, 2103, 10.1023/B:BILE.0000007076.64338.ce Kot, 2015, Drożdże jako potencjalne źródło tłuszczu mikrobiologicznego, Postep. Mikrobiol., 54, 364 Koushki, 2012, Comparison of ethanol production from cheese whey permeate by two yeast strains, J. Food Sci. Technol., 49, 614, 10.1007/s13197-011-0309-0 Križková, 2001, Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro, Mut. Res., 497, 213, 10.1016/S1383-5718(01)00257-1 Krzyczkowska, 2012, Biotechnologiczna synteza związków powierzchniowo czynnych i przykłady ich praktycznego zastosowania, Zywn. Nauk. Technol. Ja., 4, 5 Kurcz, 2016, Wykorzystanie odpadów pochodzących z przemysłu rolno-spożywczego do produkcji biomasy drożdży paszowych Candida utilis, Postep. Mikrobiol., 55, 19 Kurcz, 2016, Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis, Waste Biomass Valor, 10.1007/s12649-016-9782-z Kurtzman, 1998, 1 Kurtzman, 1998, Candida arabinofermentans, a new L-arabinose fermenting yeast, Ant. Van Leeuwenhoek, 74, 237, 10.1023/A:1001799607871 Laroche, 2007, New development and prospective applications for β(1,3)-glucans, Recent Pat. Biotechnol., 1, 59, 10.2174/187220807779813938 Li, 2015, An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis, Chem. Eng. J., 263, 249, 10.1016/j.cej.2014.11.013 Lim, 2006, Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies, Cancer Epidemiol. Biomarkers Prev., 15, 1654, 10.1158/1055-9965.EPI-06-0203 Luna, 2016, Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties, Process Saf. Environ. Prot., 102, 558, 10.1016/j.psep.2016.05.010 Luna, 2011, Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995, Curr. Microbiol., 62, 1527, 10.1007/s00284-011-9889-1 Marcinkiewicz, 2012, Wpływ warunków hodowli drożdży Yarrowia lipolytica na wydajność syntezy erytrytolu z glicerolu, NIT, 3, 90 Max, 2010, Biotechnological production of citric acid, Braz. J. Microbiol., 41, 862, 10.1590/S1517-83822010000400005 Miadoková, 2006, Diverse biomodulatory effects of glucomannan from Candida utilis, Toxicol. In Vitro, 20, 649, 10.1016/j.tiv.2005.12.001 Mirończuk, 2014, Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures, J. Ind. Microbiol. Biotechnol., 41, 57, 10.1007/s10295-013-1380-5 Mirończuk, 2015, A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol, Biores. Technol., 198, 445, 10.1016/j.biortech.2015.09.008 Moon, 2010, Biotechnological production of erythritol and its applications, Appl. Microbiol. Biotechnol., 86, 1017, 10.1007/s00253-010-2496-4 Nehal, 2013, Knowledge of traditional fermented food products harbored by the tribal folks of Indian Himalayan belt, Int. J. Agric. Food Sci. Technol., 4, 401 Nguyen, 1998, Composition of the cell walls of several yeast species, Appl. Microbiol. Biotechnol., 50, 206, 10.1007/s002530051278 Nigam, 2000, Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein, World J. Microbiol. Biotechnol., 16, 367, 10.1023/A:1008922806215 Novák, 2012, Yeast β(1,3), (1,6)-d-glucan films: preparation and characterization of some structural and physical properties, Carbohydr. Polym., 87, 2496, 10.1016/j.carbpol.2011.11.031 Oberoi, 2010, Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803, Process Biochem., 45, 1299, 10.1016/j.procbio.2010.04.017 Papanikolaou, 2009, Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica, Lipid Technol., 21, 83, 10.1002/lite.200900017 Papanikolaou, 2011, Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production, Eur. J. Lipid Sci. Technol., 113, 1031, 10.1002/ejlt.201100014 Patle, 2007, Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis, Biotechnol. Lett., 29, 1839, 10.1007/s10529-007-9493-4 Petersen, 1990, Yeasts producing exopolysaccharides with drag-reducing activity, Enzyme Microb. Technol., 12, 255, 10.1016/0141-0229(90)90096-9 Pogačić, 2013, Microbiota of kefir grains, Mljekarstvo, 63, 3 Rajoka, 2012, Production of microbial biomass protein from mixed substrates by sequential culture fermentation of Candida utilis and Brevibacterium lactofermentum, Ann. Microbiol., 62, 1173, 10.1007/s13213-011-0357-8 Rakicka, 2016, Technology of efficient continuous erythritol production from glycerol, J. Clean. Prod., 139, 905, 10.1016/j.jclepro.2016.08.126 Rekha, 2012, Production and optimization of lipase from Candida rugosa using groundnut oilcake under solid state fermentation, Int. J. Eng. Res. Appl., 1, 571 Řezanka, 2015, Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus, Phytochemistry, 110, 37, 10.1016/j.phytochem.2014.12.013 Richard, 2003, Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway, FEMS Yeast Res., 3, 185, 10.1016/S1567-1356(02)00184-8 Roman, 2014, Selenium biochemistry and its role for human health, Metallomics, 6, 25, 10.1039/C3MT00185G Rufino, 2012, Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals, Chem. Eng. Trans., 27, 61 Rufino, 2011, Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988, Colloids Surf. B Biointerfaces, 84, 1, 10.1016/j.colsurfb.2010.10.045 Rusinova-Videva, 2010, Effect of different factors on biosynthesis of exopolysaccharide from Antarctic yeast, Biotechnol. Biotechnol. Equip., 24, 507, 10.1080/13102818.2010.10817891 Ruszova, 2008, Photoprotective effects of glucomannan isolated from Candida utilis, Carbohydr. Res., 343, 501, 10.1016/j.carres.2007.11.010 Rywińska, 2010, High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch biorectors, J. Ind. Microbiol. Biotechnol., 37, 431, 10.1007/s10295-009-0687-8 Rywińska, 2013, Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications, Biomass Bioenerg., 48, 148, 10.1016/j.biombioe.2012.11.021 Saha, 1999, Production of xylitol by Candida peltata, J. Ind. Microbiol. Biotechnol., 22, 633, 10.1038/sj.jim.2900674 Santos, 2013, Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture, Bioresour. Technol., 138, 48, 10.1016/j.biortech.2013.03.135 Saran, 2015, High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans, Bioresour. Technol., 198, 31, 10.1016/j.biortech.2015.08.146 Sarkar, 1994, Kinema – a traditional soybean fermented food: proximate composition and microflora, Food Microbiol., 11, 47, 10.1006/fmic.1994.1007 Savergave, 2011, Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23, Biochem. Eng. J., 55, 92, 10.1016/j.bej.2011.03.009 Simova, 2002, Lactic acid bacteria and yeasts in kefir grains and kefir made from them, J. Ind. Microbiol. Biotechnol., 28, 1, 10.1038/sj/jim/7000186 Singleton, 1987 Sobrinho, 2013, Application of biosurfactant from Candida sphaerica UCP 0995 in removal of petroleum derivative from soil and sea water, J. Life Sci., 7, 559 Soccol, 2006, New perspectives for citric acid production and application, Food Technol. Biotechnol., 44, 141 Sohliya, 2009, Tungrymbai – a traditional fermented soybean food of the ethnic tribes of Meghalaya, Indian J. Tradit. Knowl., 8, 559 Soltanian, 2007, Influence of different yeast cell wall mutants on performance and protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia, Fish Shellfish Immunol., 23, 141, 10.1016/j.fsi.2006.09.013 Sreenath, 2000, Production of ethanol from wood hydrolyzate by yeasts, Bioresour. Technol., 72, 253, 10.1016/S0960-8524(99)00113-3 Sun, 2010, Comparison of cell growth and ethanol productivity on different pretreatment of rice straw hemicellulose hydrolysate by using Candida shehatae CICC 1766, Afr. J. Microbiol. Res., 4, 1105 Swain, 2015, Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis, Ind. Crops Prod., 77, 1039, 10.1016/j.indcrop.2015.10.013 Tan, 2003, Screening of high lipase producing Candida sp. and production of lipase by fermentation, Process Biochem., 39, 459, 10.1016/S0032-9592(03)00091-8 Thanardkit, 2002, Glucan from spent brewer's yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed, World J. Microbiol. Biotechnol., 18, 527, 10.1023/A:1016322227535 Thanomsub, 2004, Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast Candida ishiwadae, J. Appl. Microbiol., 96, 588, 10.1111/j.1365-2672.2004.02202.x Thongdumyu, 2014, Optimization of ethanol production from food waste hydrolysate by co-culture of Zymomonas mobilis and Candida shehatae under non-sterile condition, Afr. J. Biotechnol., 13, 866, 10.5897/AJB2013.13335 Tizard, 1989, The biological activities of mannans and related complex carbohydrates, Mol. Biother, 1, 290 Tokunaka, 2000, Immunopharmacological and immunotoxicological activities of a water-soluble (1-->3)-beta-D-glucan, CSBG from Candida spp, Int. J. Immunopharmacol., 22, 383, 10.1016/S0192-0561(99)00093-4 Ur-Rehman, 2015, Xylitol: a review on bioproduction, application, health benefits, and related safety issues, Crit. Rev. Food Sci. Nutr., 55, 1514, 10.1080/10408398.2012.702288 Vallejos, 2016, Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse, Ind. Crops Prod., 91, 161, 10.1016/j.indcrop.2016.07.007 Van Bogaert, 2010, Sophorolipid production by Candida bombicola on oils with a special fatty acid composition and their consequences on cell viability, Biotechnol. Lett., 32, 1509, 10.1007/s10529-010-0323-8 Vicková, 2004, Antigenotoxic potential of glucomannan on four model test systems, Cell Biol. Toxicol., 20, 325, 10.1007/s10565-004-0089-7 Vormann, 2016, Magnesium: nutrition and homoeostasis, AIMS Public Health, 3, 329, 10.3934/publichealth.2016.2.329 Wannawilai, 2015, Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892, J. Biotechnol., 20, 58, 10.1016/j.jbiotec.2014.11.037 Wen, 2016, Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037, J. Biosci. Bioeng., 121, 631, 10.1016/j.jbiosc.2015.10.011 West, 2016, A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production, World J. Microbiol. Biotechnol., 32, 73, 10.1007/s11274-016-2031-6 Xia, 1995, Identification of required nutrient components of yeast nitrogen base for Candida shehatae ATCC 22984 fermenting xylose to ethanol, Biotechnol. Lett., 17, 161, 10.1007/BF00127981 Yadav, 2014, Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey, Bioresour. Technol., 164, 119, 10.1016/j.biortech.2014.04.069 Yang, 2014, A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol, Bioresour. Technol., 151, 120, 10.1016/j.biortech.2013.10.031 Yarrow, 1972, Four new combinations in yeasts, Ant. Van Leeuwenhoek, 38, 357, 10.1007/BF02328105 Yuvadetkun, 2016, Ethanol production capability of Candida shehatae in mixed sugars and rice straw hydrolysate, Sains Malays, 45, 581 Zalacain, 1995, Dry fermented sausages elaborated with lipase from Candida cylindracea. Comparison with traditional formulations, Meat Sci., 40, 55, 10.1016/0309-1740(94)00023-Z Zalacain, 1996, Addition of lipase from Candida cylindracea to a traditional formulation of a dry fermented sausage, Meat Sci., 42, 155, 10.1016/0309-1740(95)00033-X Żarowska, 2004, Charakterystyka procesu ciagłej biosyntezy kwasu cytrynowego przez mutanty octanowe Yarrowia lipolytica z syropu fruktozowego, Acta Sci. Pol. Biotechnol., 3, 97 Zhang, 2012, Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18, Bioresour. Technol., 105, 134, 10.1016/j.biortech.2011.11.119