Tiềm năng công nghệ sinh học của Microcystis sp. trong quá trình hấp thụ Cu, Zn và Cd từ các hệ đơn kim loại và đa kim loại

Biology of Metals - Tập 14 - Trang 67-74 - 2001
Subhashree Pradhan1, L.C. Rai1
1Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi-, INDIA

Tóm tắt

Bài báo này cung cấp thông tin về quá trình hấp thụ Cu, Zn và Cd bởi Microcystis sp. trong các hệ đơn, hai và ba kim loại. Hấp thụ Cu cao nhất, tiếp theo là Zn và Cd trong điều kiện đơn lẻ cũng như trong các hỗn hợp chứa hai hoặc ba kim loại đã được ghi nhận. Thứ tự ức chế hấp thụ Cu, Zn và Cd trong các tổ hợp hai và ba kim loại cho thấy sự cạnh tranh hoặc phân loại cho các vị trí liên kết trên bề mặt tế bào. Quan sát này đã được xác nhận lại bằng isotherm hấp phụ Freundlich. Giá trị Kf lớn nhất cho Cu (Kf=45.18), tiếp theo là Zn (Kf=16.71) và Cd (Kf=15.63) trong hệ kim loại đơn. Giá trị Kf cho mỗi kim loại thử nghiệm đã giảm trong dung dịch chứa nhiều hơn một kim loại. Hơn nữa, sự giảm hấp thụ của từng ion kim loại do sự hiện diện của ion kim loại khác có độ lớn lớn hơn khi nồng độ của ion kim loại gây trở ngại cao hơn. Hấp thụ Cu đạt bão hòa ít bị ảnh hưởng hơn khi kim loại thứ cấp (Cd hoặc Zn) được thêm vào môi trường. Các kết quả trên cho thấy Microcystis có tiềm năng lớn trong việc hấp thụ kim loại từ hỗn hợp.

Từ khóa

#Microcystis #hấp thụ kim loại #Cu #Zn #Cd #tổ hợp đa kim loại #Freundlich

Tài liệu tham khảo

Aksu Z, Acikel U, Kutsal T. 1997 Application of multicomponent adsorption isotherms to simultaneous biosorption of iron (III) and chromium (VI) on Chlorella vulgaris. J Chem Tech Biotechnol 70, 368–378. Allen JS, Brown PA. 1995 Isotherm analyses for single component and multi-component metal sorption onto lignite. J Chem Tech Biotechnol 62, 17–24. Beveridge TJ. 1989 Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43, 147–171. Chandra M, Rempel GL. 1993 Polyethyleneimine adduct of poly (vinyl benzaldehyde): a highly selective sorbent for iron (III). React Polym 19, 213–223. Cho DY, Lee ST, Park SW, Chung AS. 1994 Studies on the biosorption of heavy metals onto Chlorella vulgaris. J Environ Sci Health, Part A, 29, 389–409. Chong KH, Volesky B. 1996 Metal biosorption equilibria in a ternary system. Biotech Bioeng 49, 629–638. Cotoras D, Viedma P, Cifuentes L, Mestre A. 1992 Sorption of metal ions by whole cells of Bacillus and Micrococcus. Environ Technol 13, 551–559. Crist RH, Martin JR, Carr D Watson JR, Clarke H. 1994 Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and reassessment of Scatchard plots; ion-exchange rates and equilibria compared with calcium alginate. Environ Sci Technol 28, 1859–1866. de Carvalho RP, Chong KH, Volesky B. 1995 Evaluation of the Cd, Cu and Zn biosorption in two-metal systems using algal biosorbent. Biotechnol Prog 11, 39–44. Echeverria JC, Morera MT, Mazkiaran C, Garrido JJ. 1998 Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. Environ Pollution 101, 275–284. Gonzalez-Davila M, Santana-Casiano JM, Perez-Pena J. 1995 Binding of Cu (II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29, 289–301. Holan ZR, Volesky B. 1994 Biosorption of lead and nickel by seaweed materials. Biotechnol Bioeng 43, 1001–1009. Huang CP, Morehart AL. 1990 The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24, 433–439. Knauer K, Behra R, Sigg L. 1997 Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J Phycol 33, 596–601. Lee JD. 1998 Concise Inorganic Chemistry. ELBS with Chapman and Hall, London. Leusch A, Holan ZR, Volesky B. 1995 Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. J Chem Technol Biotechnol 62, 279–288. Maranon E, Sastre H. 1992 Behaviour of lignocellulosic apple residues in the sorption of trace metals in packed beds. React Polym 18, 173–176. Martin RB. 1986 Bioinorganic chemistry of metal ion toxicity. In: Sigel H, Marcel Dekker. eds. Metal Ions in Biological Systems. New York and Basel. Mckay G, Porter JF. 1997 Equilibrium parameters for the sorption of Cu, Cd and Zn ions onto peat. Chem Tech Biotechnol 69, 309–320. Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW. 1989 Bacterial sorption of heavy metals. Appl Environ 55, 3143–3149. Pascucci PR, Sneddon J. 1993 A simultaneous study for the removal of lead, zinc and copper by an algal biomass. J Environ Sci Health A28, 1483–1493. Sag Y, Kutsal T. 1998 The simultaneous biosorption of Cr(VI), Fe(III) and Cu(II) on Rhizopus arrhizus. Process Biochem 33, 571–579. Schiewer S, Volesky B. 1996 Modelling multi-metal ion exchange in biosorption. Environ Sci Technol 30, 2921–2927. Simmons P, Tobin JM, Singleton I. 1995 Considerations on the use of commercially available yeast biomass for the treatment of metal containing effluents. J Ind Microbiol 14, 240–246. Stumm W. 1992 Chemistry of the solid-water interface. New York: John Wiley. Ting YP, Teo WK. 1994 Uptake of Cd and Zn by yeast: Effects of co-metal ion and physical and chemical treatments. Biores Technol 50, 113–117. Tobin JM, Cooper DG, Neufeld RJ. 1984 Uptake of metal ion by Rhizopus arrhizus biomass. Appl Microbiol 47, 821–824. Zhou JL, Huang PL, Lin RG. 1998 Sorption and desorption of Cu and Cd by macro-and micro-algae. Environ Pollut 101, 67–75.