Biotechnological aspects of sulfate reduction with methane as electron donor
Tóm tắt
Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more attractive electron donor. Sulfate reduction with methane as electron donor prevails in marine sediments. Recently, several authors succeeded in cultivating the responsible microorganisms in vitro. In addition, the process has been studied in bioreactors. These studies have opened up the possibility to use methane as electron donor for sulfate reduction in wastewater and gas treatment. However, the obtained growth rates of the responsible microorganisms are extremely low, which would be a major limitation for applications. Therefore, further research should focus on novel cultivation techniques.
Tài liệu tham khảo
Alperin MJ (1989) The carbon cycle in an anoxic marine sediment: concentrations, rates, isotope ratios, and diagenetic models. Ph.D. Thesis, University of Alaska, Fairbanks
Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50(4):940–945
Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2:279–288
Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220
Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London
Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A Gen 176:159–176
Barnes R, Goldberg E (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300
Bartish CM, Drissel GM (1978) Carbon monoxide. In: Krirk-Othmer R (ed) Encyclopedia of chemical technology. Wiley, NY, pp 772–793
Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187
Bijmans MFM, Peters TWT, Lens PNL, Buisman CJN (2008) High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res 42:2439–2448
Blair NE, Aller RC (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim Cosmochim Acta 59:3707–3715
Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl Environ Microbiol 71:4345–4351
Boetius A (2005) Lost city live. Science 307:1420–1422
Boetius A, Suess E (2004) Hydrate ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205(3–4):291–310
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626
Boonstra J, van Lier R, Janssen G, Dijkman H and Buisman CJN (1999) Biological treatment of acid mine drainage. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. process metallurgy, vol 9B. Elsevier, Amsterdam, pp 559–567
Bottrell SH, Newton RJ (2006) Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci Rev 75:59–83
Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
Chang S, Des Marais D, Mac R, Miller SL, Strathearn GE (1983) Prebiotic organic synthesis and origin of life. In: Schopf JW (ed) Earth′s earliest biosphere—its origin and evolution. Proncton University Press, Pronceton, pp 99–139
Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 67:29–46
Costa C, Dijkema C, Friedrich M, García P, Encina-Encina P, Fernández-Polanco P, Stams AJM (2000) Denitrifcation with methane as electron donor in oxygen-limited bioreactors Appl. Microbiol Biotechnol 53:754–762
Crabtree RH (1995) Aspects of methane chemistry. Chem Rev 95:987–1007
Damm E, Budéus G (2003) Fate of vent derived methane in seawater above the Haakon Mosby mud volcano (Norwegian Sea). Mar Chem 82:1–11
Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126
DeLong EF (2000) Resolving a methane mystery. Nature 407:577–579
Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163
Deusner C, Meyer V, Ferdelman TG (2009) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioengin. doi:10.1002/bit.22553
Dries J, De Smul A, Goethals L, Grootaerd H, Verstraete W (1998) High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9:103–111
du Preez LA, Maree JP (1994) Pilot-scale biological sulphate and nitrate removal utilizing producer gas as energy source. Water Sci Technol 30:275–285
Eller G, Känel L, Krüger M (2005) Co-occurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71:8925–8929
Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300
Elvert M, Greinert J, Suess E, Whiticar MJ (2001) Carbon isotopes of biomarkers derived from methane-oxidizing microbes at Hydrate Ridge, Cascadia convergent margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and dynamics. American Geophysical Union, Washington, pp 115–129
Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulphate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419
Esposito G, Weijma J, Pirozzi F, Lens PNL (2003) Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochem 39:491–498
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10(11):3164–3173
Frankin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44(8):1–6
Girguis PR, Orphan VJ, Hallam SJ, DeLong EF (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 69:5472–5482
Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulphate-reducing bacteria in a continuous flow bioreactor. Appl Environ Microbiol 71:3725–3733
Grossman EL, Cifuentes LA, Cozzarelli IM (2002) Anaerobic methane oxidation in a landfill-leachate plume. Environ Sci Technol 36:2436–2442
Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methaneoxidizing Archaea. Appl Environ Microbiol 69:5483–5491
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471
Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Mar Geol 137:13–23
Harper SR, Pohland FG (1986) Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol Bioeng 28:585–602
Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Heidelberg, pp 457–477
Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805
Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analyses of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701
Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8(4):451–463
Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41
Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: Anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy 27(11):1331–1338
Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451
Houghton JT, Ding Y, Griggs DJ et al (eds) (2001) Trace gases: current observations, trends and budgets. In: Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 248–254
Houweling S, Kaminski T, Dentener F, Lelieveld J, Heimann M (1999) Inverse modelling of methane sources and sinks using the adjoint of a global transport model. J Geophys Res 104(26):137–160
Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113
Islas-Lima S, Thalasso F, Gomez-Hernandez J (2004) Evidence of anoxic methane oxidation coupled to denitrification. Water Res 38:13–16
Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30(5):944–955
Iversen N, Oremland RS, Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Oceanogr 32(4):804–814
Jagersma CG, Meulepas RJW, Heikamp-de Jong I, Gieteling J, Klimiuk A, Schouten S, Sinninghe Damsté JS, Lens PNL, Stams AJM (2009) Microbial diversity and community structure of a highly active anaerobic methane oxidizing sulfate-reducing enrichment. Environ Microbiol 11(12):3223–3232
Janssen AJH, Lettinga G, de Keizer A (1999) Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles. Colloids Surf A 151:389–397
Johnson D (2000) Biological removal of sulfurous compounds from inorganic wastewaters. In: Lens PNL, Hulshoff Pol LW (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA, London, pp 175–206
Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188
Joye AB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238
Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7(6):541–564
Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effect of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343
Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of guaymas basin. Appl Environ Microbiol 70(20):1231–1233
Khalil M, Shearer MJ (2000) Sources of methane: an overview. In: Khalil M (ed) Atmospheric methane: its role in the global environment. Springer, New York, pp 98–111
Kirk-Othmer (2000) Encyclopidia of chemical technology. Wiley, New York
Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria above gas hydrate (Cascadia Margin, OR). Geomicrobiol J 20:269–294
Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479
Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881
Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A (2005) Microbial methane turnover in different marine habitats. Palaeogeogr Palaeoclimatol Palaeoecol 227:6–17
Krüger M, Wolters H, Gehre M, Joye SB, Richnow H-H (2008) Tracing the slow growth of anaerobic methane-oxidizing communities by 15N-labelling techniques. FEMS Microbiol Ecol 63:401–411
Kvenvolden KA (1995) A review of the geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008
Lee SG, Goo JH, Kim HG, Oh J-I, Kim JM, Kim SW (2004) Optimiation of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950
Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2):128–150
Lens PNL, Visser A, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28(1):41–88
Lens P, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325
Lens PNL, Gastesi R, Lettinga G (2003) Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases. Biodegradation 14:229–240
Lettinga G, van Haandel AC (1993) Anaerobic treatment for energy production and environmental protection. In: Johansson TB et al (eds) Renewable energy. Island Press, Washington, DC, pp 817–839
Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463
Mackenzie FT (1998) Our changing planet: an introduction to earth system science and global environmental change. Prentice Hall, New Jersey 486 p
Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. J Biol Inorg Chem 7:500–513
Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169
Martens CS, Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. I. Dissolved gases. Limnol Oceanogr 22:10–25
Martens CS, Albert DB, Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea. Am J Sci 299:589–610
Meulepas RJW (2009) Biotechnological aspects of anaerobic oxidation of methane coupled to sulfate reduction. PhD thesis, Wageningen university, Wageningen, The Netherlands
Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens PNL (2009a) Enrichment of anaerobic methanotrophs in a sulfate-reducing membrane bioreactor. Biotechnol Bioeng 104(3):458–470
Meulepas RJW, Jagersma CG, Khadem AF, Buisman CJN, Stams AJM, Lens PNL (2009b) Effect of environmental conditions on sulfate reduction with methane as electron donor by an Eckernförde bay enrichment. Environ Sci Technol 43(17):6553–6559
Meulepas RJW, Jagersma CG, Zhang Y, Petrillo M, Cai H, Buisman CJN, Stams AJM, Lens PNL (2010) Trace methane oxidation and the methane-dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiol Ecol (in press)
Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science 297:1014–1015
Moran JJ, House CH, Freeman KH, Ferry JG (2004) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1:303–309
Moran JJ, House CH, Thomas B, Freeman KH (2007) Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. J Geophys Res 112:1–7
Morin D, Lips A, Pinches A, Huisman J, Frias C, Norberg A, Forssberg E (2006) BioMinE—integrated project for the development of biotechnology for metal-bearing materials in Europe. Europe Hydrometallurgy 83:69–76
Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32:3797–3810
Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454
Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529
Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–300
Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7(1):98–106
Nauhaus K, Albrech M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9(1):187–196
Niemann H, Duarte J, Hensen C, Omoregie E, Magalhães VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336–5355
Niewöhner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta 62:455–464
O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375
O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33(5):555–569
Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulphate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281
Oremland RS, DesMarais DJ (1983) Distribution, abundance and carbon isotope composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline meromictic lake. Geochim Cosmochim Acta 47:2107–2114
Oremland RS, Miller LG, Whiticar MJ (1987) Sources and fluxes of natural gases from Mono Lake, California. Geochim Cosmochim Acta 51:2915–2929
Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001a) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487
Orphan VJ, Hinrichs K-U, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001b) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934
Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS 99:7663–7668
Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136
Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC, the Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and bacteria. Appl Environ Microbiol 66:1126–1132
Panganiban AT, Patt TE, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309
Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge
Raghoebarsing AA, Poll A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921
Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344
Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352
Reeburgh WS (1996) “Soft spots” in the global methane budget. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C, compounds. Kluwer, Dordrecht, pp 334–352
Reeburgh WS, Ward B, Whalen SC, Sandbeck KA, Kilpatrick KA, Kerkhof LJ (1991) Black Sea methane geochemistry. Deep Sea Res 38:S1189–S1210
Reguera G, McCarthy KD, Metha T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101
Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640
Sahinkaya E, Ozkaya B, Kaksonen AH, Puhakka JA (2007) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65C temperatures is limited by acetate oxidation. Water Res 41:2706–2714
Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(20):262–280
Seifert R, Nauhaus K, Blumenberg M, Krüger M, Michaelis W (2006) Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Org Geochem 37:1411–1419
Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648
Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence ofdeep-sea cold-seep communities at active and passive margerns. Deep-Sea Res II 45:517–567
Sipma J, Meulepas RJW, Parshina SN, Stams AJM, Lettinga G, Lens PNL (2004) Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl Microbiol Biotechnol 64(3):421–428
Sipma J, Begona Osuna M, Lettinga G, Stams AJM, Lens PNL (2007) Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Water Res 41:1995–2003
Sørensen KB, Finster K, Ramsing NB (2001) Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb Ecol 42:1–10
Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Baas M, van Weering TCE, Ivanov MK, Poludetkina E, Sinninghe Damste JS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96
Stadnitskaia A, Ivanov MK, Blinova V, Kreulen R, van Weering TCE (2006) Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Mar Pet Geol 23:281–296
Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic. Environ Antonie van Leeuwenhoek 66:271–294
Stams AJM, Plugge CM, de Bok FAM, van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Wat Sci Technol 52(1–2):13–20
Stams AJM, de Bok FA, Plugge CM, van Eekert MH, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382
Stucki G, Hanselmann KW, Hürzeler RA (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotechnol Bioeng 41:303–315
Sultan N, Cochonat P, Foucher J-P, Mienert J (2003) Effect of gas hydrates melting on seafloor slope stability. Mar Geol 213:379–401
Thauer RK, Shima S (2008) Methane as fuel for anaerobic organisms. Ann NY Acad Sci 1125:158–170
Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, MIchaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966
Thiel V, Peckman J, Richnow HH, Luth U, Reitner J, Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and microbial mat. Mar Chem 73:97–112
Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67(4):1646–1656
Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14
Treude T, Krüger M, Boetius A, Jørgensen BB (2005a) Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic) Limnol. Oceanogr 50:1771–1786
Treude T, Niggeman J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A, Jørgensen BB (2005b) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta 69(11):2767–2779
Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of Methane and CO2 by Methanotrophic Microbial mats from gas seeps of the anoxic Black sea. Appl Environ Microbiol 73(7):2271–2283
Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81:271–282
Vallero MVG, Lettinga G, Lens PNL (2005) High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. J Membr Sci 253:217–232
van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere 39:167–182
van den Bosch PLF (2008) Biological sulfide oxidation by natron-alkaliphilic bacteria. PhD thesis, Wageningen University, Wageningen
van der Drift A, van Doorn J, Vermeulen JW (2001) Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass Bioenergy 20:45–56
van Houten RT (1996) Biological sulphate reduction with synthesis gas. PhD Thesis, Wageningen University, The Netherlands
van Houten RT, Hulshoff Pol LW, Lettinga G (1994) Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol Bioengin 44:586–594
van Houten RT, Elferink SJWHO, van Hamel SE, Pol LWH, Lettinga G (1995a) Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Bioresour Technol 54:73–79
van Houten RT, van der Spoel H, van Aelst AC, Hulshoff Pol LW, Lettinga G (1995b) Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol Bioengin 50:136–144
van Houten RT, Yun SY, Lettinga G (1997) Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotechnol Bioengin 55:807–814
van Houten BHGW, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJM (2006) Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40:553–560
Veeken AHM, Akoto L, Hulshoff Pol LW, Weijma J (2003) Control of the sulfide (S2−) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res 37:3709–3717
Waki M, Suzuki K, Osada T, Tanaka Y (2004) Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresour Technol 96:921–927
Wallmann K, Drews M, Aloisi G, Bohrmann G (2006) Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes. Earth Planet Sci Lett 248:544–559
Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10(9):2287–2298
Weijma J, Stams AJM, Hulshoff Pol LW, Lettinga G (2000) Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol Bioenring 67(3):354–363
Weijma J, Copini CFM, Buisman CJN, Schulz CE (2002) Biological recovery of metals, sulfur and water in the mining and metallurgical industry. In: Lens P (ed) Water recycling, resource recovery in industry: analysis, technologies, implementation. IWA, London, pp 605–622
Whiticar MJ (1996) Isotope tracking of microbial methane formation and oxidation. Mitt Internat Verein Limnol 25:39–54
Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotech 12:259–276
Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 265–303
Wu Z, Zhou H, Peng X, Chen G (2006) Anaerobic oxidation of methane: geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China. Chin Sci Bull 51(16):2006–2015
Xin J-J, Cui J-R, Niu J-Z, Hua S-F, Xia C-G, Li S-B, Zhu L-M (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22(3):225–229
Yamamoto S, Alcauskas JB, Crozier TE (1967) Solubility of methane in distilled water and seawater. J Chem Eng Data 21(1):78–80
Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137(1):420–432
Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39(1):194–204