Các phương pháp sinh học để nâng cao sản xuất salidroside, rosin và các dẫn xuất của chúng trong các nền văn hóa in vitro của các loài Rhodiola được chọn

Springer Science and Business Media LLC - Tập 14 - Trang 657-674 - 2014
Marta Grech-Baran1, Katarzyna Sykłowska-Baranek1, Agnieszka Pietrosiuk1
1Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland

Tóm tắt

Rhodiola (Crassulaceae), một loài thực vật arctic-alpine, được sử dụng rộng rãi trong y học dân gian của các nước Châu Á và Châu Âu. Nhiều nghiên cứu đã chỉ ra rằng các chế phẩm Rhodiola có tác dụng thích ứng, bảo vệ thần kinh, chống khối u, bảo vệ tim mạch và chống trầm cảm. Các hợp chất chính chịu trách nhiệm cho những hoạt động này được cho là salidroside, rosin và các dẫn xuất của nó, đã trở thành mục tiêu của các nghiên cứu công nghệ sinh học. Bài tổng quan này tóm tắt các kết quả của những phương pháp công nghệ sinh học đa dạng được thực hiện nhằm nâng cao sản xuất salidroside, rosin và các dẫn xuất của chúng trong các nền văn hóa callus, tế bào huyền phù và cơ quan in vitro của các loài Rhodiola được chọn.

Từ khóa

#Rhodiola #salidroside #rosin #công nghệ sinh học #in vitro #y học dân gian

Tài liệu tham khảo

Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfuss T (2003) Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull Exp Med 136(6):585–587 Akgul Y, Ferreira D, Abourashed EA, Khan IA (2004) Lotaustralin from Rhodiola rosea roots. Fitoterapia 75:612–614 Ali Z, Fronczek FR, Khan IA (2008) Phenylalkanoids and monoterpene analogues from the roots of Rhodiola rosea. Planta Med 74:178–181 Altantsetseg K, Przybył J, Węglarz Z, Geszprych A (2007) Content of biologically active compounds in roseroot (Rhodiola spp.) raw material of different derivation. Herba Pol 53(4):20–26 Bozhilova M (2011) Salidroside content in Rhodiola rosea L., dynamics and variability. Bot Serb 35(1):67–70 Brown RP, Gerbarg PL, Ramazanov Z (2002) Rhodiola rosea: a phytomedicinal overview. Herbal Gram 56:40–52 Buchwald W, Mścisz A, Krajewska-Patan A, Furmanowa M, Mielcarek S, Mrozikiewicz PM (2006) Content of biologically active compounds in Rhodiola rosea roots during the vegetation period. Herba Pol 52:39–43 Bykov VA, Zapesochnaya GG, Kurkin VA (1999) Traditional and biotechnological aspects of obtaining medicinal preparations from Rhodiola rosea L. (a review). Pharm Chem J 33(1):29–40 Calcabrini C, De Bellis R, Mancini U, Cucchiarini L, Potenza L, De Sanctis R, Patrone V, Scesa C, Dachà M (2010) Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch Dermatol Res 302(3):191–200 Chen QG, Zeng YS, Qu ZQ, Tang JY, Qin YJ, Chung P, Wong R, Hägg U (2009a) The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine 16:830–838 Chen X, Zhang Q, Chen Q, Ding F (2009b) Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem 332(1–2):85–93 Chen D, Fan J, Wang P, Zhu L, Jin Y, Peng Y, Du S (2012) Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem 134:2126–2133 Cheng YZ, Chen LJ, Lee WJ, Chen MF, Jung Lin H, Cheng JT (2012) Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats. J Ethnopharmacol 144(2):234–239 Choe KI, Kwon JH, Park KH, Oh MH, Kim MH, Kim HH, Cho SH, Chung EK, Ha SY, Lee MW (2012) The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules 17:11484–11494 Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H (2000) Rhodiola rosea in stress induced fatigue: a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 7(5):365–371 De Bock K, Eijnde BO, Ramaekers M, Hespel P (2004) Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab 14(3):298–307 Diermen D, Van Marston A, Bravo J, Reist M, Carrupt P, Hostettmann K (2009) Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 122:397–401 Du M, Xie J (1995) Flavonol glycosides from Rhodiola crenulata. Phytochemistry 38(3):809–810 Flora of China (2001) Rhodiola Linnaeus, Sp. Pl 2: 1035.17538:251–268 Furmanowa M, Oledzka H, Michalska M, Sokolnicka I, Radomska D (1995) Rhodiola rosea L. (Roseroot): in vitro regeneration and the biological activity of roots. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 33. Medicinal and Aromatic Plants VIII (pp 412–426). Springer, Berlin Furmanowa M, Skopinska-Rozewska E, Rogala E, Hartwich M (1998) Rhodiola rosea in vitro culture: phytochemical analysis and antioxidant action. Acta Soc Bot Pol 67:69–73 Furmanowa M, Hartwich M, Alfermann AW, Kozminski W, Olejnik M (1999) Rosavin as a product of glycosylation by Rhodiola rosea (roseroot) cell cultures. Plant Cell Tissue Organ Cult 56:105–110 Galambosi B (2006) Demand and availability of Rhodiola rosea L. in raw material. In Bogers RJ, Craker LE , Lange D (eds) Medicinal and aromatic plants. Netherland, Springer. Ch 16:223–236 Galambosi B, Galambosi ZS, Hethelyi E, Szoke E, Volodin V, Poletaeva I, Lljina I (2010) Importance and quality of roseroot (Rhodiola rosea L.) growing in the European North. Z Arznei-Gewurzpfla 15(4):160–169 GBIF (2010) Biodiversity occurrence data provided by Global Biodiversity Information Facility. http://data.gbif.org Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199 Grech-Baran M, Syklowska-Baranek K, Giebultowicz J, Wroczynski P, Pietrosiuk A (2013) Tyrosol-glycosyltransferase activity and production of salidroside in natural and transformed root cultures of Rhodiola kirilowii (Regel) Regel et Maximowicz. Acta Biol Cracov Bot 55(2):126–133 Grech-Baran M, Sykłowska-Baranek K, Krajewska-Patan A, Wyrwał A, Pietrosiuk A (2014) Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii. Biotechnol Lett 36:649–656 Gryszczyńska A, Łowicki Z, Opala B, Krajewska-Patan A, Buchwald W, Czerny B, Mielcarek S, Mrozinkiewicz PM (2012) Comparison of phenylethanoids content in Rhodiola kirilowii and Rhodiola rosea roots using applying new developed UPLC-MS/MS method. Herba Pol 58(4):28–38 Guest HJ, Allen GA (2014) Geographical origins of North American Rhodiola (Crassulaceae) and phylogeography of the western roseroot. J Biogeogr, Rhodiola integrifolia. doi:10.1111/jbi.12267 Gupta V, Lahiri SS, Sultana S, Tulsawani K, Kumar R (2010) Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold hypoxia and restraint (C–H–R) exposure and post-stress recovery. Chem Toxicol 48:1019–1025 György Z (2006) Glucoside production by in vitro Rhodiola rosea cultures. Dissertation, Acta Universitatis Ouluensis C Technica 244. Oulu Gyorgy Z, Jaakola L, Neubauer P, Hohtola A (2009) Isolation and genotype-dependent, organ-specific expression analysis of a Rhodiola rosea cDNA encoding tyrosine decarboxylase. J Plant Physiol 166:1581–1586 György Z, Tolonen A, Pakonen M, Neubauer P, Hohtola A (2004) Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Sci 166(1):229–236 György Z, Tolonen A, Neubauer P, Hohtola A (2005) Enhanced biotransformation capacity of Rhodiola rosea callus cultures for glycoside production. Plant Cell Tissue Organ Cult 83(2):129–135 Hu X, Lin S, Yu D, Qiu S, Zhang X, Mei R (2010a) A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol 26:499–507 Hu X, Zhang X, Qiu S, Yu D, Lin S (2010b) Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem Biophys Res Commun 398(1):62–67 Hung SK, Perry R, Ernst E (2011) The effectiveness and efficacy of Rhodiola rosea L.: a systematic review of randomized clinical trials. Phytomedicine 18(4):235–244 Kang S, Zhang J, Lu Y, Lu D (1992) Chemical constituents of Rhodiola kirilowii (Reg.) Reg. China J Chin Mater Med 17(2):1001–1027 Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5(2):243–256 Kołodziej B, Sugier D (2012) Selected elements of biology and morphology of Roseroot in South-Eastern Poland. Acta Sci Pol Hortorum 11(5):127–142 Komarov WL, Juzepczyk SV (ed) (1939) Flora SSSR. Moscow-Leningrad IX, pp 24–53 Krajewska-Patan A, Furmanowa M, Mścisz A, Derger M, Łowicka A, Górska-Paukszta M, Mielcarek S, Mrozikiewicz PM (2006) Tissue cultures of Rhodiola Kirilowii (Regel.) Maxim: contents of biologically active components at different stages of growth. Herba Pol 52:98–106 Krajewska-Patan A, Dreger M, Łowicka A, Górska-Pauszkta M, Mścirz A, Mielcarek S, Baraniak M, Buchwald W, Furmanowa M, Mrozikiewicz PM (2007a) Chemical investigations of biotransformed Rhodiola rosea callus tissue. Herba Pol 53(4):77–87 Krajewska-Patan A, Furmanowa M, Dreger M, Górska-Paukszta M, Łowicka A, Mścisz A, Mielcarek S, Baraniak M, Buchwald W, Mrozikiewicz PM (2007b) Enhancing the biosynthesis of salidroside by biotransformation of p-tyrosol in callus culture of Rhodiola rosea L. Herba Pol 53(1):55–64 Krajewska-Patan A, Derger M, Łowicka A, Górska-Paukszta M, Furmanowa M, Mścisz A, Mielcarek S, Baraniak M, Mrozikiewicz PM (2008a) Rhodiola rosea and Rhodiola kirilowii callus cultures in biotransformation process. II national conference “genetics and genomics in crop improvement—from a model plant to a new cultivar”. Poznań, 24–26 November, Abstracts:12 Krajewska-Patan A, Furmanowa M, Derger M, Mścisz A, Mielcarek S, Kania M, Buchwald W, Baraniak M, Pietrosiuk A, Zych M, Karasiewicz M, Bogacz A, Kujawski R, Mrozikiewicz PM (2008b) Rhodiola kirilowii: the present status and perspectives of medicinal use. Part I. In vivo and in vitro cultivation as well as phytochemical investigations of extracts of roots and callus tissues. Herba Pol 54:47–48 Krajewska-Patan A, Dreger M, Buchwald W, Górska -Paukszta M, Mielcarek S, Baraniak M, Mścisz A, Furmanowa M, Mrozikiewicz PM (2009) Callus tissues of Rhodiola kirilowii (Regel) Maxim.—dynamics of growth and active compounds production. Herba Pol 55(3):222–230 Krajewska-Patan A, Gryszczyńska A, Mielcarek S, Furmanowa M, Buchwald W, Mikołajczak PM, Czerny B, Mrozikiewicz PM (2013) Possible Rhodiola kirilowii use in modern phytotherapy. Postępy Fitoterapii 1:22–27 Krasnov EA, Kuvaiev VB, Chorużaya TG (1978) Chemotaxonomic investigations of Rhodiola spp. Rast Res 14(2):153–160 Kucharski W, Mordalski R, Buchwald W, Mielcarek S (2011) Roseroot: the comparison of tillage in conventional and ecological system. J Res Appl Agric Eng 56(3):232–235 Kurkin VA, Zapesochnaya GG (1986) Chemical composition and pharmacological properties of Rhodiola rosea. Chem Pharm J (Moscow) 20(10):1231–1244 Kurkin VA, Zapesochnaya GG, Shchavlinskii AN, Nukhimovskii EL, Vandyshev VV (1985) Metod opredeleniya podlinnosti i kachestva kornevishch rodioly rozovoj (Methods of analysis of identity and quality of Rhodiola rosea roots). Khim Farm Zh 19:185–190 Kurkin VA, Zapesochnaya GG, Gorbunov YN, Nukhimovskii EL, Sreter AI, Shchavlinskii AN (1986) Chemical investigations on some species of Rhodiola L. and Sedum L. genera and problemes of their chemotaxonomy. Rast Res 22(3):310–319 Lee MW, Lee YA, Park HM, Toh SH, Lee EJ, Jang HD, Kim YH (2000) Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch Pharm Res 23(5):455–458 Li HB, Chen F (2001) Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensis by high-speed counter-current chromatography. J Chromatogr A 932:91–95 Liu Z, Liu Y, Liu C, Song Z, Li Q, Zha Q, Lu C, Wang C, Ning Z, Zhang Y, Tian C, Lu A (2013) The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem Cent J 7:118 Ma LQ, Liu BY, Gao DY, Pang XB, Lü SY, Yu HS, Wang H, Yan F, Li ZQ, Li YF, Ye HC (2007) Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis. Plant Cell Rep 26(7):989–999 Ma LQ, Gao DY, Wang YN, Wang HH, Zhang JX, Pang XB, Hu TS, Lu SY, Li GF, Ye HC, Li YF, Wang H (2008) Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. Plant Biol 10:323–333 Ma C, Hu L, Fu Q, Gu X, Tao G, Wang H (2013) Separation of four flavonoids from Rhodiola rosea by on-line combination of sample preparation and counter-current chromatography. J Chromatogr A 1306:12–29 Mao GX, Wang Y, Qiu Q, Deng HB, Yuan LG, Li RG, Song DQ, Li YY, Li DD, Wang Z (2010) Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech Ageing Dev 131(11–12):723–731 Meng QY, Jiang ML, Zhong WT, Cheng GH, Liu SHY, Ma QL (1994) Controlling the root-rot disease of Rhodiola sachalinensis A. Bor with pesticides (Chinese). J Shenyang Agric Univ 25(3):264–267 Nakamura S, Li X, Matsuda H, Yoshikawa M (2007) Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem Pharm Bull 55(10):1505–1511 Nakamura S, Li X, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem Pharm Bull 56(4):536–540 Nan JX, Jiang YZ, Park EJ, Ko GK, Youn-Chul S, Sohn DH (2003) Protective effect of Rhodiola sachalinensis extract on carbon tetrachloride-induced liver injury in rats. J Ethnopharmacol 84:143–148 Nitsch J, Nitsch C (1969) Haploid plants from pollen grains. Science 169:85–87 Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440 Olsson EM, Schéele B, Panossian A (2009) A randomized, double-blind, placebo-controlled, parallel-group study of the standardized extract SHR-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med 75(2):2105–2112 Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17(7):481–493 Patov SA, Punegov VV, Kuchin AV (2006) Synthesis of the Rhodiola rosea glycoside rosavin. Chem Nat Compd 42:397–399 Peng JN, Ma CY, Ge YC (1995) Studies on the chemical constituents of Rhodiola crenulata. Chin Tradit Herb Drugs 26(4):177–179 Peschel W, Prieto JM, Karkour C, Williamson EM (2013) Effect of provenance, plant part and processing on extract profiles from cultivated European Rhodiola rosea L. for medicinal use. Phytochemistry 86:92–102 Plant List. http://www.theplantlist.org Platikanov S, Evstatieva L (2008) Introduction of wild golden root (Rhodiola rosea L) as a potential economic crop in Bulgaria. Econ Bot 64(4):621–627 Przybył J, Węglarz Z, Geszprych A (2008) Quality of roseroot (Rhodiola rosea L.) cultivated in Poland. Acta Hort 765:143–150 Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153 Revina TA, Krasnov EA, Sviridova TP, Stepanyuk GY, Surov YP (1976) Biological characteristics and chemical composition of Rhodiola rosea grown in Tomsk. Rast Res 12(3):355–360 Russian Pharmacopeia (1989) Rhizomata et Radices Rhodiolae roseae. 11th eds, vol. 2 Meditsina, Moskva Saratikov AS, Krasnov EA (1987) Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University Saratikov AS, Krasnov EA, Khnikina LA, Duvidson LM (1967) Isolation and chemical analysis of individual biologically active constituents of Rhodiola rosea. Proceedings of the Siberian Academy of Sciences. Biology 1:54–60 Saunders D, Poppleton DI, Struchkov A, Ireland RJ (2013) Analysis of five bioactive compounds from naturally occurring Rhodiola rosea in Eastern Canada. Can J Plant Sci. doi:10.4141/CJPS2013-177 Schriner SE, Avanesian A, Liu Y, Luesch H, Jafari M (2009) Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Rad Biol Med 47(5):577–584 Seo WG, Pae HO, Oh GS, Kim NY, Kwon TO, Kwon TO, Shin MK, Chai KY, Chung HT (2001) The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J Ethnopharmacol 76(1):119–123 Sheng CZ, Hu TQ, Bi H, Yuan YJ, Jiang Y (2005) Effects of plant growth substances on induction and culture of callus from Rhodiola quadrifida. Zhongguo Zhong Yao Za Zhi 30(16):1237–1240 Shi T, Chen H, Jing L, Liu X, Sun X, Jiang R (2011) Development of a kilogram-scale synthesis of salidroside and its analogs. Synth Commun 41:2594–2600 Shi L, Wang C, Zhou X, Zhang Y, Liu Y, Ma C (2013) Production of salidroside and tyrosol in cell suspension cultures of Rhodiola crenulata. Plant Cell Tiss Organ Cult 114:295–303 Shilpa K, Varun K, Lakshimi BS (2010) An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. J Plant Sci 5(3):222–247 Siwicki AK, Skopińska-Różewska E, Wasiutyński A, Wójcik R, Zdanowski R, Sommer E (2012) The effect of Rhodiola kirilowii extracts on pigs blood leukocytes metabolic (RBA) and proliferative (LPS) activity, and on the bacterial infection and blood leukocytes number in mice. Cent Eur J Immunol 37(2):145–150 Skopińska-Różewska E, Hartwich M, Andrzej K, Siwicki AK, Wasiutyński A, Sommer E, Mazurkiewicz M, Bany J, Skurzak H (2008a) The influence of Rhodiola rosea extracts and rosavin on cutaneous angiogenesis induced in mice after grafting of syngeneic tumor cells. Cent Eur J Immunol 33(3):102–107 Skopińska-Różewska E, Malinowski M, Wasiutyński A, Sommer E, Furmanowa M, Mazurkiewicz M, Siwicki AK (2008b) The influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in mice. Pol J Vet Sci 11(2):97–104 Skopińska-Różewska E, Wasiutyński A, Sommer E, Sebastian Mielcarek S, Mścisz A, Krajewska-Patan A, Mazurkiewicz M, Pastewka K (2008c) The influence of Rhodiola rosea, Rhodiola kirilowii and Rhodiola quadrifida extracts on cutaneous angiogenesis induced in mice after grafting of human kidney cancer tissue. Cent Eur J Immunol 33(4):185–189 Sokolov SJ, Ivashkin VM, Zapesochnaya GG, Kurkin VA, Shchavlinsky AN (1985) Isledovan’ye neyrotropnoy aktivnostinovykh veshchestv vydelenykh iz rodioly rozovoy (Studies on neurotropic activity of new compounds isolated from Rhodiola rosea) Khim. Farm Zh 19:1367–1371 [In Russian] Sokolov SJ, Boiko VP, Kurkin VA, Zapesochnaya GG, Rvantsova NV, Grinenko NA (1990) Sravnitel’noe isledovan’e stimuliruyushchikh svoistv nekotorykh fenilpropanoidov (Comparative examination of stimulant properties of some phenylpropanoids) Khim. Farm Zh 1:66–68 [In Russian] Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV (2000) A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 7(2):85–89 Su XF, Zhang H, Shao JX, Wu HY (2007) Theoretical study on the structure and properties of crenulatin molecule in herb Rhodiola crenulata. J Mol Struct 847(1–3):59–67 Sun C, Wang Z, Zheng Q, Zhang H (2012) Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 19(3–4):355–363 Tao GR, Zhao YP, Qi JH, Xu K, Yang L (2010) Salidroside contents of Rhodiola plants growing in different regions. Acta Bot Boreal Occident Sin 30(9):567 Tasheva K, Kosturkova G (2010) Bulgarian golden root in vitro cultures for micropropagation and reintroduction. Cent Eur J Biol 5(6):853–863 Tolonen A, Pakonen M, Hohtola A, Jalonen J (2003) Phenylpropanoid glycosides form Rhodiola rosea. Chem Pharm Bull 51(4):467–470 Tutin TG (1964) Flora Europaea. Cambridge University Press, Cambridge Vijaya SN, Udayasri PV, Aswani KY, Ravi BB, Phani KY, Vijay VM (2010) Advancements in the production of secondary metabolites. J Nat Prod 3:112–123 Wagner H, Nörr H, Winterhof H (1994) Plant adaptogens. Phytomedicine 1(1):63–76 Wang S, Wang FP (1992) Studies on the chemical components of Rhodiola crenulata. Yao Xue Xue Bao 27(2):117–120 Wang J, Rong X, Li W, Yang Y, Yamahara J, Li Y (2012) Rhodiola crenulata root ameliorates derangements of glucose and lipid metabolism in a rat mode lo the metabolic syndrome and type2 diabetes. J Ethnopharmacol 142:782–788 Węglarz Z, Przybył J, Geszprych A (2008) Roseroot (Rhodiola rosea L.): effect of internal and external factors on accumulation of biologically active compounds. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Berlin 16:297–315 Wiedenfeld H, Dumaa M, Malinowski M, Furmanowa M, Narantuya S (2007a) Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida. Pharmazie 62(4):308–311 Wiedenfeld H, Zych M, Buchwald W, Furmanowa M (2007b) New compounds from Rhodiola kirilowii. Sci Pharm 75:29–34 Wójcik R, Siwicki AK, Skopińska-Różewska E, Wasiutyński A, Sommer E, Furmanowa M (2009) The effect of Chinese medicinal herb Rhodiola kirilowii extracts on cellular immunity in mice and rats. Pol J Vet Sci 12(3):399–405 Wong YC, Zhao M, Zong YY, Chan CY, Che CT (2008) Chemical constituents and anti-tuberculosis activity of root of Rhodiola kirilowii. China J Chin Mater Med 33(13):1561–1565 Wu S, Zu Y, Wu M (2003) High yield production of salidroside in the suspension culture of Rhodiola sachalinensis. J Biotechnol 106(1):33–43 Wu T, Zhou H, Jin Z, Bi S, Yang X, Yi D, Liu W (2009) Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur J Pharmacol 613(1–3):93–99 Xu JF, Su ZG (1997) Regulation of metabolism for improved salidroside production in cell suspension culture of Rhodiola sachalinensis A. Bor: the effect of precursors. Nat Prod Res Dev 10:8–14 [In Chinese] Xu J, Xie J, Han A, Feng P, Su Z (1998a) Kinetic and technical studies on large-scale culture of Rhodiola sachalinensis compact callus aggregates with air-lift reactors. J Chem Technol Biotechnol 72:227–234 Xu JF, Liu CB, Han AM, Feng PS, Su ZG (1998b) Strategies for the improvement of salidroside production in cell suspension cultures of Rhodiola sachalinensis. Plant Cell Rep 17(4):288–293 Xu JF, Su ZG, Feng PS (1998c) Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. J Biotechnol 61(1):69–73 Xu JF, Ying PQ, Han AM, Su ZG (1999) Enhanced salidroside production in liquid-cultivated compact callus aggregates of Rhodiola sachalinensis: manipulation of plant growth regulators and sucrose. Plant Cell Tissue Organ Cult 55:53–58 Yan X, Wu S, Wang Y, Shang X, Dai S (2004) Soil nutrient factors related to salidroside production of Rhodiola sachalinensis distributed in Chang Bai Mountain. Environ Exp Bot 52:267–276 Yao K, Luca VD, Brisson N (1995) Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 7:1787–1799 Yoshikawa M, Shimada H, Shimoda H, Murakami N, Yamahara J, Matsuda H (1996) Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and antiallergic activity of rhodiocyanosides A and B from the underground part of Rhodiola quadrifida (Pall.) Fisch. et Mey. (Crassulaceae). Chem Pharm Bull 44(11):2086–2091 Yousef GG, Grace MH, Cheng DM, Belolipov IV, Raskin I, Lila MA (2006) Comparative phytochemical characterization of three Rhodiola species. Phytochemistry 67(21):2380–2391 Yu S, Liu M, Gu X, Ding F (2008) Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cell Mol Neurobiol 28(8):1067–1078 Yu S, Shen Y, Liu J, Ding F (2010) Involvement of ERK1/2 pathway in neuroprotection by salidroside against hydrogen peroxide-induced apoptotic cell death. J Mol Neurosci 40(3):321–331 Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN (2011) Characterization of glucosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry 72:862–870 Zapesochnaya GG, Kurkin VA, Boyko VP, Kolhir VK (1995) Fenilpropanoidy – perspektivichnye biologicheski aktivnye veshchestva lekarstvennykh rasteniy (Phenylpropanoids as prospective bioactive substances from medicinal plants) Khim. Farm Zh 29(4):47–50 Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, Cao G, Wang Z (2007a) Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564(1–3):18–25 Zhang S, Bi H, Liu C (2007b) Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep Purif Technol 57(2):277–282 Zhang JX, Ma LQ, Yu HS, Zhang H, Wang HT, Qin YF, Shi GL, Wang YN (2011) A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. Plant Cell Rep 30:1443–1453 Zhou X, Wu Y, Wang X, Liu B, Xu H (2007) Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull 30(3):439–442 Zhou J, Xie G, Yan X (2011) Encyclopedia of traditional Chinese medicines: molecular structures, pharmacological activities, natural sources and applications: vol 4, Isolated compounds, pp 416 Springer, Heidelberg Zuo G, Li Z, Chen L, Xu X (2007) Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV S3 serine protease. Antiviral Res 76(1):86–92