Biotechnological applications of halophilic lipases and thioesterases

Springer Science and Business Media LLC - Tập 98 Số 3 - Trang 1011-1021 - 2014
Steven Schreck1, Amy M. Grunden2
1Department of Microbiology, North Carolina State University, Raleigh, USA
2Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48(3):160–167

Barnes EM Jr, Wakil SJ (1968) Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J Biol Chem 243(11):2955–2962

Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML, Ollivier B, Baratti JC (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248(2):133–140

Bolhuis AKD, Thomas JR (2008) Halophilic adaptations of proteins. Protein adaptation in extremophiles. K.S. Siddiqui and T Thomas. New York, Nova Science: 71–104

Boutaiba SBT, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41:21–26

Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16(10):1149–1161

Chakraborty K, Paulraj R (2008) Enrichment of eicosapentaenoic acid from sardine oil with Delta5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824. J Agric Food Chem 56(4):1428–1433

Cho H, Cronan JE Jr (1993) Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268(13):9238–9245

Copeland A, O'Connor K, Lucas S, Lapidus A, Berry KW, Detter JC, Del Rio TG, Hammon N, Dalin E, Tice H, Pitluck S, Bruce D, Goodwin L, Han C, Tapia R, Saunders E, Schmutz J, Brettin T, Larimer F, Land M, Hauser L, Vargas C, Nieto JJ, Kyrpides NC, Ivanova N, Goker M, Klenk HP, Csonka LN, Woyke T (2011) Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11(T)). Stand Genomic Sci 5(3):379–388

Davis MS, Solbiati J, Cronan JE Jr (2000) Overproduction of acetyl–CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275(37):28593–28598

Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 61(1):90–104

Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Mikrobiologiia 76(5):581–593

Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma-membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723

Fojan P, Jonson PH, Petersen MT, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82(11):1033–1041

Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327(2):347–357

Grunden A, Killens-Cade R, Kitchener R, Mathews S, Schreck S, Ji M, Turner R, McInnes C (2013) Production of extremophilic proteins using Escherichia coli-based expression systems. Protein purification and analysis II – Methods and Applications. ISBN: . iConcept Press. Retrieved from http://www.iconceptpress.com/books/protein-purification-and-analysis-ii-methods-and-applications/

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

Jiang P, Cronan JE Jr (1994) Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol 176(10):2814–2821

Jiang X, Huo Y, Cheng H, Zhang X, Zhu X, Wu M (2012) Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T. Extremophiles 16(3):427–435

Kanlayakrit W, Boonpan A (2007) Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Kasetsart J (Nat Sci) 41:576–585

Karan RKS, Sinha R, Khare SK (2012) Halophilic microorganisms as sources of novel enzymes. Microorganisms in sustainable agriculture and biotechnology. TJ Satyanarayana, Bhavdish Narain; Anil Prakash, Springer Netherlands: 555–579

Kastritis PL, Papandreou NC, Hamodrakas SJ (2007) Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs. Int J Biol Macromol 41(4):447–453

Kushner, Dj (1993). Growth and nutrition of halophilic bacteria. The biology of halophilic bacteria. RH Vreeland, Hochstein, L.I. Boca Raton, CRC: 87–103

Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38(3):272–290

Lee LSS, Huang H, Shaw F (1999) C-terminal His-tagging results in substrate specificity changes of the thioesterase I from Escherichia coli. J Am Oil Chem Soc 76:1113–1118

Lee LC, Lee YL, Leu RJ, Shaw JF (2006) Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1. Biochem J 397(1):69–76

Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72(4):623–634

Li J, Derewenda U, Dauter Z, Smith S, Derewenda ZS (2000) Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Biol 7(7):555–559

Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38(10):1635–1647

Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M (2012) Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Factories 11:41

Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98

Makrides M, Smithers LG, Gibson RA (2010) Role of long-chain polyunsaturated fatty acids in neurodevelopment and growth. Nestle Nutr Work Ser Pediatr Program 65:123–133, discussion 133–126

Margesin R, Schinner F (2001a) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663

Margesin R, Schinner F (2001b) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5(2):73–83

Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86(2–3):155–164

Moreno M, Perez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

Muller-Santos M, de Souza EM, Pedrosa Fde O, Mitchell DA, Longhi S, Carriere F, Canaan S, Krieger N (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 1791(8):719–729

Oh K, Willett WC, Fuchs CS, Giovannucci E (2005) Dietary marine n − 3 fatty acids in relation to risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev 14(4):835–841

Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren K, Goldman A (1992) The alpha/beta hydrolase fold. Protein Eng 5(3):197–211

Oren A (2002) Adaptation of halophilic archaea to life at high salt concentrations. Salinity: environments–plants–molecules. AL Lauchli, U. Dordrecht, Kluwer Academic: 81–96

Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9(4):275–279

Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36(1):105–110

Ozcan B, Ozyilmaz G, Cihan A, Cokmus C, Caliskan M (2012) Phylogenetic analysis and characterization of lipolytic activity of halophilic archaeal isolates. Mikrobiologiia 81(2):205–213

Perez D, Martin S, Fernandez-Lorente G, Filice M, Guisan JM, Ventosa A, Garcia MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325

Perez D, Kovacic F, Wilhelm S, Jaeger KE, Garcia MT, Ventosa A, Mellado E (2012) Identification of amino acids involved in hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 158:2192–2203

Rao JK, Argos P (1981) Structural stability of halophilic proteins. Biochemistry 20(23):6536–6543

Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4(9):e6980

Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl–coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268(26):19254–19259

Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl–CoA carboxylase in the diatom Cyclotella cryptica. Ann N Y Acad Sci 721:250–256

Sana BGD, Saha M, Mukherjee J (2007) Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans. Process Biochem 42:1571–1578

Schreck SD, Killens-Cade RR and Grunden AM (2013) Characterization of halophilic acyl–CoA thioesterase from Chromohalobacter salexigens for use in biofuel production." Current Biotechnology, 2(4). doi: 10.2174/18722083113076660034

Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50

Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166(2):486–520

Tadeo X, Lopez-Mendez B, Castano D, Trigueros T, Millet O (2009) Protein stabilization and the Hofmeister effect: the role of hydrophobic solvation. Biophys J 97(9):2595–2603

Tanhuanpaa K, Somerharju P (1999) Gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J Biol Chem 274(50):35359–35366

Ventosa A, Nieto JJ, Oren A (1998) Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544

Wang WAE, Campos AA, Killens-Cade RR, Dean L, Dvora M, Immer JG, Mixson S, Srirangan S, Sauer M, Schreck S, Sun K, Thapiliya N, Wilson C, Burkholder J, Grunden AM, Lamb HH, Sederoff H, Stikeleather LF, Roberts WL (2013) Dunaliella marine microalgae to drop-in replacement liquid transportation fuel. Environmental Progress, 32(4):916–925

Wijendran V, Hayes KC (2004) Dietary n − 6 and n − 3 fatty acid balance and cardiovascular health. Annu Rev Nutr 24:597–615

Zheng YN, Li LL, Liu Q, Yang JM, Wang XW, Liu W, Xu X, Liu H, Zhao G, Xian M (2012) Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Factories 11:65