Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency

Plant Growth Regulation - Tập 97 Số 3 - Trang 439-454 - 2022
Hamza Armghan Noushahi1, Aamir Hamid Khan2, Usama Farhan Noushahi3, Mubashar Hussain4, Talha Javed5, Maimoona Zafar1, Maria Batool1, Umair Ahmed6, Ke Liu7, Matthew Tom Harrison7, Shah Saud8, Shah Fahad9, Shaohua Shu1
1College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
2National Key Lab of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
3Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
4Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
5College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
6Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
7Tasmanian Institute of Agriculture, University of Tasmania, 7250, Burnie, Tasmania, Australia
8College of Life Science, Linyi University, 276000, Linyi, Shandong, China
9Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, 570228, Haikou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdjul DB, Yamazaki H, Maarisit W et al (2017) Oleanane triterpenes with protein tyrosine phosphatase 1B inhibitory activity from aerial parts of Lantana camara collected in Indonesia and Japan. Phytochemistry 144:106–112. https://doi.org/10.1016/j.phytochem.2017.08.020

Ahmed U, Rao MJ, Qi C et al (2021) Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress. Molecules 26:5546. https://doi.org/10.3390/molecules26185546

Ahn CS, Pai HS (2008) Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. Plant Mol Biol. https://doi.org/10.1007/s11103-007-9286-0

Ajikumar PK, Xiao WH, Tyo KEJ et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. https://doi.org/10.1126/science.1191652

Akindele A, Ibe I, Adeyemi O (2011) Analgesic and Antipyretic Activities of Drymaria cordata (Linn.) Willd (Caryophyllaceae) Extract. Afr J Tradit Complement Altern Med 9:25–35. https://doi.org/10.4314/ajtcam.v9i1.4

Alanjary M, Cano-Prieto C, Gross H, Medema MH (2019) Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 36:1249–1261. https://doi.org/10.1039/c9np00021f

Alghasham AA (2013) Cucurbitacins: A Promising Target for Cancer Therapy. Int J Health Sci (Qassim) 7:77–89. https://doi.org/10.12816/0006025

Arruda ALA, Vieira CJB, Sousa DG et al (2011) Jacaranda cuspidifolia Mart. (Bignoniaceae) as an Antibacterial Agent. J Med Food 14:1604–1608. https://doi.org/10.1089/jmf.2010.0251

Augustin JM, Drok S, Shinoda T et al (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160:1881–1895. https://doi.org/10.1104/pp.112.202747

Bisswanger H (2014) Enzyme assays. Perspect Sci 1:41–55. https://doi.org/10.1016/j.pisc.2014.02.005

Blin K, Shaw S, Steinke K et al (2019) AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz310

Boël G, Letso R, Neely H et al (2016) Codon influence on protein expression in E. coli correlates with mRNA levels. Nature. https://doi.org/10.1038/nature16509

Borella R, Forti L, Gibellini L et al (2019) Synthesis and Anticancer Activity of CDDO and CDDO-Me, two derivatives of natural triterpenoids. molecules 24:4097. https://doi.org/10.3390/molecules24224097

Böttger A, Vothknecht U, Bolle C, Wolf A (2018) Terpenes and Terpenoids. Learn Mater Biosci 153–170. doi:https://doi.org/10.1007/978-3-319-99546-5-10

Boutanaev AM, Moses T, Zi J et al (2015) Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl Acad Sci 112:E81–E88. https://doi.org/10.1073/pnas.1419547112

Carretero-Paulet L, Ahumada I, Cunillera N et al (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-Deoxy- d -Xylulose 5-Phosphate reductoisomerase, the first committed enzyme of the 2- C -Methyl- d -Erythritol 4-Phosphate pathway. Plant Physiol 129:1581–1591. https://doi.org/10.1104/pp.003798

Chahed K, Oudin A, Guivarc’h N et al (2000) 1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38:559–566. https://doi.org/10.1016/S0981-9428(00)00781-6

Chandra M, Kushwaha S, Mishra B, Sangwan N (2022) Molecular and structural insights for the regulation of terpenoids in Ocimum basilicum and Ocimum tenuiflorum. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00796-y

Chavali AK, Rhee SY (2018) Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. Brief Bioinform 19:1022–1034. https://doi.org/10.1093/bib/bbx020

Chen Q, Fan D, Wang G (2015) Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in arabidopsis flowers. Mol Plant 8:1434–1437. https://doi.org/10.1016/j.molp.2015.05.001

Cheng S, Sliva D (2015) Ganoderma lucidum for Cancer Treatment. Integr Cancer Ther 14:249–257. https://doi.org/10.1177/1534735414568721

Ching YP, Davies SP, Hardie DG (1996) Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. Eur J Biochem 237:800–808. https://doi.org/10.1111/j.1432-1033.1996.0800p.x

Chrzanowski J, Chrzanowska A, Graboń W (2021) Glycyrrhizin: An old weapon against a novel coronavirus. Phyther Res 35:629–636. https://doi.org/10.1002/ptr.6852

Clomburg JM, Blankschien MD, Vick JE et al (2015) Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng 28:202–212. https://doi.org/10.1016/j.ymben.2015.01.007

Cordoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943. doi: https://doi.org/10.1093/jxb/erp190

Corey EJ, Matsuda SPT, Bartel B (1993) Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci USA 90:11628–11632. https://doi.org/10.1073/pnas.90.24.11628

Cui CH, Kim DJ, Jung SC et al (2017) Enhanced production of gypenoside LXXV using a novel ginsenoside-transforming β-glucosidase from ginseng-cultivating soil bacteria and its anti-cancer property. Molecules. https://doi.org/10.3390/molecules22050844

Cui L, Noushahi HA, Zhang Y et al (2021) Endophytic fungal community of Huperzia serrata: diversity and relevance to the production of Huperzine A by the plant host. Molecules 26:892. https://doi.org/10.3390/molecules26040892

Dai L, Liu C, Zhu Y et al (2015) Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol 56:1172–1182. https://doi.org/10.1093/pcp/pcv043

Dellas N, Thomas ST, Manning G, Noel JP (2013) Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672. https://doi.org/10.7554/eLife.00672

Eisenbrand G (2006) Glycyrrhizin. Mol Nutr Food Res 50:1087–1088. https://doi.org/10.1002/mnfr.200500278

Elena C, Ravasi P, Castelli ME et al (2014) Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00021

Eng CH, Backman TWH, Bailey CB et al (2018) ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Res 46:D509–D515. https://doi.org/10.1093/nar/gkx893

Fang Y, Luo M, Song X et al (2020) Improving the production of squalene-type triterpenoid 2,3;22,23-squalene dioxide by optimizing the expression of CYP505D13 in Saccharomyces cerevisiae. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2020.04.005

Fath S, Bauer AP, Liss M et al (2011) Multiparameter RNA and codon optimization: A standardized tool to assess and enhance autologous mammalian gene expression. PLoS ONE. https://doi.org/10.1371/journal.pone.0017596

Fedorova ND, Moktali V, Medema MH (2012) Bioinformatics approaches and software for detection of secondary metabolic gene clusters. Fungal Secondary Metabolism. Humana Press, Totowa, NJ, pp 23–45. https://doi.org/10.1007/978-1-62703-122-6_2

Frank SL, Christiansen MH (2018) Hierarchical and sequential processing of language a response to: Ding, melloni, tian, and poeppel (2017). rule-based and word-level statistics-based processing of language: Insights from neuroscience. language, cognition and neuroscience. Lang Cogn Neurosci. https://doi.org/10.1080/23273798.2018.1424347

Fu J, Liu G, Yang M et al (2019) Isolation and functional analysis of squalene synthase gene in tea plant Camellia sinensis. Plant Physiol Biochem 142:53–58. https://doi.org/10.1016/j.plaphy.2019.06.030

Furubayashi M, Ikezumi M, Takaichi S et al (2015) A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nat Commun. https://doi.org/10.1038/ncomms8534

Ghosh S (2016) Biosynthesis of structurally diverse triterpenes in plants: The role of oxidosqualene cyclases. In: Proceedings of the Indian National Science Academy. DOI: https://doi.org/10.16943/ptinsa/2016/48578

Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117. https://doi.org/10.1016/j.pbi.2014.05.006

Guo H, Wang H, Huo Y-X (2020) Engineering critical enzymes and pathways for improved triterpenoid biosynthesis in yeast. ACS Synth Biol 9:2214–2227. https://doi.org/10.1021/acssynbio.0c00124

Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol. doi: https://doi.org/10.1007/3-540-44604-4_2

Henry LK, Thomas ST, Widhalm JR et al (2018) Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat Plants 4:721–729. https://doi.org/10.1038/s41477-018-0220-z

Hsieh WY, Hsieh MH (2015) The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms. Plant Signal Behav 10:e988072. https://doi.org/10.4161/15592324.2014.988072

Ibrahim SRM, Abdallah HM, Mohamed GA, Ross SA (2016) Integracides H-J: New tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Fitoterapia 112:161–167. https://doi.org/10.1016/j.fitote.2016.06.002

Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. https://doi.org/10.1016/j.fgb.2010.06.003

Kim J-H (2018) Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 42:264–269. https://doi.org/10.1016/j.jgr.2017.10.004

Kim SM, Kim YB, Kuzuyama T, Kim SU (2008) Two copies of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK) gene in Ginkgo biloba: Molecular cloning and functional characterization. Planta 228:941–950. https://doi.org/10.1007/s00425-008-0794-1

Kliebenstein DJ, Osbourn A (2012) Making new molecules - evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol. doi: https://doi.org/10.1016/j.pbi.2012.05.005

Kuhlman B, Bradley P (2019) Advances in protein structure prediction and design. Nat Rev Mol Cell Biol doi. https://doi.org/10.1038/s41580-019-0163-x

Lan X (2013) Molecular cloning and characterization of the gene encoding 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase from hairy roots of Rauvolfia verticillata. https://doi.org/10.2478/s11756-012-0140-8. Biol

Lange BM, Croteau R (1999) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: Cloning and heterologous expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365:170–174. https://doi.org/10.1006/abbi.1999.1168

Lee JS, Pan J-J, Ramamoorthy G, Poulter CD (2017) Structure–function studies of artemisia tridentata farnesyl diphosphate synthase and chrysanthemyl diphosphate synthase by site-directed mutagenesis and morphogenesis. J Am Chem Soc 139:14556–14567. https://doi.org/10.1021/jacs.7b07608

Lenihan JR, Tsuruta H, Diola D et al (2008) Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog. https://doi.org/10.1002/btpr.27

Li T, Wei Z, Sun Y et al (2019) Withanolides, extracted from datura metel l. inhibit keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the STAT3/P38/ERK1/2 pathway. Molecules 24:2596. https://doi.org/10.3390/molecules24142596

Li Y, Calvo SE, Gutman R et al (2014) Expansion of biological pathways based on evolutionary inference. Cell. https://doi.org/10.1016/j.cell.2014.05.034

Lim H, Park J, Woo HM (2020) Overexpression of the key enzymes in the methylerythritol 4phosphate pathway in corynebacterium glutamicum for improving farnesyl diphosphate-derived terpene production. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c04307

Liu D, Gong J, Dai W et al (2012) The genome of ganderma lucidum provide insights into triterpense biosynthesis and wood degradation. PLoS ONE 7:e36146. https://doi.org/10.1371/journal.pone.0036146

Liu G, Fu J (2018) Squalene synthase cloning and functional identification in wintersweet plant (Chimonanthus zhejiangensis). Bot Stud 59:30. https://doi.org/10.1186/s40529-018-0246-6

Lodeiro S, Xiong Q, Wilson WK et al (2007) An oxidosqualene cyclase makes numerous products by diverse mechanisms: A challenge to prevailing concepts of triterpene biosynthesis. J Am Chem Soc. https://doi.org/10.1021/ja073133u

Lu C, Pu Y, Liu Y et al (2019) Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. Plant Physiol Biochem 142:415–428. https://doi.org/10.1016/j.plaphy.2019.07.023

Lu ZM, Lei JY, Xu HY et al (2011) Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-011-3544-4

Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Pharmacognosy. Elsevier, pp 233–266

Majdi M, Karimzadeh G, Malboobi MA (2014) Spatial and developmental expression of key genes of terpene biosynthesis in Tanacetum parthenium. Biol Plant 58:379–384. https://doi.org/10.1007/s10535-014-0398-5

Manzano D, Fernandez-Busquets X, Schaller H et al (2004) The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta 219:982–992. https://doi.org/10.1007/s00425-004-1301-y

Markov AV, Kel AE, Salomatina OV et al (2019) Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: A transcriptome analysis. https://doi.org/10.18632/oncotarget.27085. Oncotarget

Martin VJJ, Piteral DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. https://doi.org/10.1038/nbt833

Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

McClory J, Lin J-T, Timson DJ et al (2019) Catalytic mechanism of mevalonate kinase revisited, a QM/MM study. Org Biomol Chem 17:2423–2431. https://doi.org/10.1039/C8OB03197E

Mills JS, Werner AEA (1955) The chemistry of dammar resin. J Chem Soc 3132. https://doi.org/10.1039/jr9550003132

Mitsuguchi H, Seshime Y, Fujii I et al (2009) Biosynthesis of steroidal antibiotic fusidanes: Functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc. https://doi.org/10.1021/ja8095976

Muffler K, Leipold D, Scheller MC et al (2011) Biotransformation of triterpenes. Process Biochem 46:1–15. https://doi.org/10.1016/j.procbio.2010.07.015

Nguyen VT, Tung NT, Cuong TD et al (2015) Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochem Lett 12:69–74. https://doi.org/10.1016/j.phytol.2015.02.012

Noushahi HA, Zhu Z, Khan AH et al (2021) Rhizosphere microbial diversity in rhizosphere of Pinellia ternata intercropped with maize. 3 Biotech 11:469. https://doi.org/10.1007/s13205-021-03011-3

Oyebode O, Kandala N-B, Chilton PJ, Lilford RJ (2016) Use of traditional medicine in middle-income countries: a WHO-SAGE study. Health Policy Plan 31:984–991. https://doi.org/10.1093/heapol/czw022

Padyana AK, Gross S, Jin L et al (2019a) Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat Commun. https://doi.org/10.1038/s41467-018-07928-x

Padyana AK, Gross S, Jin L et al (2019b) Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat Commun 10:97. https://doi.org/10.1038/s41467-018-07928-x

Parra A, Rivas F, Garcia-Granados A, Martinez A (2009) Microbial transformation of triterpenoids. Mini Rev Org Chem. https://doi.org/10.2174/157019309789371569

Peffley DM, Gayen AK (2003) Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level. J Nutr 133:38–44. https://doi.org/10.1093/jn/133.1.38

Pemberton TA, Chen M, Harris GG et al (2017) Exploring the influence of domain architecture on the catalytic function of diterpene synthases. Biochemistry 56:2010–2023. https://doi.org/10.1021/acs.biochem.7b00137

Pollier J, Moses T, González-Guzmán M et al (2013) The protein quality control system manages plant defence compound synthesis. Nature. https://doi.org/10.1038/nature12685

Pu X, Dong X, Li Q et al (2021) An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J Integr Plant Biol jipb 13076. https://doi.org/10.1111/jipb.13076

Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm219

Qu L, Li S, Zhuo Y et al (2017) Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett. https://doi.org/10.3892/ol.2017.7153

Rajniak J, Barco B, Clay NK, Sattely ES (2015) A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature. https://doi.org/10.1038/nature14907

Reddy BVija, Milshteyn B, Charlop-Powers A, Brady Z SF (2014) eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem Biol. https://doi.org/10.1016/j.chembiol.2014.06.007

Rehbein P, Berz J, Kreisel P, Schwalbe H (2019) “CodonWizard” – An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expr Purif. https://doi.org/10.1016/j.pep.2019.03.018

Ren H, Shi C, Zhao H (2020) Computational tools for discovering and engineering natural product biosynthetic pathways. https://doi.org/10.1016/j.isci.2019.100795. iScience

Richard SB, Ferrer JL, Bowman ME et al (2002) Structure and mechanism of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase: An enzyme in the mevalonate-independent isoprenoid biosynthetic pathway. J Biol Chem. https://doi.org/10.1074/jbc.C100739200

Richter A, Seidl-Adams I, Köllner TG et al (2015) A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241:1351–1361. https://doi.org/10.1007/s00425-015-2254-z

Rohdich F, Wungsintaweekul J, Lüttgen H et al (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from tomato. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.140209197

Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. https://doi.org/10.1042/bj2950517

Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters.Nat. Rev. Microbiol. 13: 509–523

Sagatova AA (2021) Strategies to better target fungal squalene monooxygenase. J Fungi 7:49. https://doi.org/10.3390/jof7010049

Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) PEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. https://doi.org/10.1111/j.1467-7652.2009.00434.x

Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2011.00025. 2:

Sawai S, Uchiyama H, Mizuno S et al (2011a) Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus. FEBS Lett 585:1031–1036. https://doi.org/10.1016/j.febslet.2011.02.037

Sawai S, Uchiyama H, Mizuno S et al (2011b) Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus. FEBS Lett. https://doi.org/10.1016/j.febslet.2011.02.037

Shang CH, Shi L, Ren A et al (2010) Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from Ganoderma lucidum. Biosci Biotechnol Biochem. https://doi.org/10.1271/bbb.90833

Shi L, Ren A, Mu D, Zhao M (2010) Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol 88:1243–1251. https://doi.org/10.1007/s00253-010-2871-1

Shi M, Luo X, Ju G et al (2016) Enhanced diterpene tanshinone accumulation and bioactivity of transgenic salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64:2523–2530. https://doi.org/10.1021/acs.jafc.5b04697

Shim JS, Lee OR, Kim YJ et al (2010) Overexpression of PgSQS1 increases ginsenoside production and negatively affects ginseng growth rate in Panax ginseng. J Ginseng Res. https://doi.org/10.5142/jgr.2010.34.2.098

Simkin AJ, Guirimand G, Papon N et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914. https://doi.org/10.1007/s00425-011-1444-6

Singh A, Kumar A, Singh IK (2020) Marine Flora: Source of drugs from the deep-sea environment. In: Neelam M N, Chandrashekar M, Indra RG, Bharat M, Chaitanya GJ (Eds.). Marine Niche: Applications in Pharmaceutical Sciences. Springer Singapore, Singapore, pp 161–181

Smanski MJ, Zhou H, Claesen J et al (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro.2015.24

Stermer BA, Bianchini GM, Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35:1133–1140. https://doi.org/10.1016/S0022-2275(20)39958-2

Sun W, Qin L, Xue H et al (2019) Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2019.1608503

Thimmappa R, Geisler K, Louveau T et al (2014a) Triterpene biosynthesis in plants. Annu. Rev. Plant Biol

Thimmappa R, Geisler K, Louveau T et al (2014b) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257. https://doi.org/10.1146/annurev-arplant-050312-120229

Thimmappa R, Geisler K, Louveau T et al (2014c) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257. https://doi.org/10.1146/annurev-arplant-050312-120229

Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. 63–106. https://doi.org/10.1007/10-2014_295

Tian G, Cheng L, Qi X et al (2015) Transgenic Cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci 11:1296–1305. https://doi.org/10.7150/ijbs.12463

Tian S, Wang D, Yang L et al (2022) A systematic review of 1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants. Plant Growth Regul 96:221–235. https://doi.org/10.1007/s10725-021-00784-8

Töpfer N, Fuchs L-M, Aharoni A (2017) The PhytoClust tool for metabolic gene clusters discovery in plant genomes. Nucleic Acids Res 45:7049–7063. https://doi.org/10.1093/nar/gkx404

Uchida H, Sumimoto K, Oki T et al (2018) Isolation and characterization of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase gene from Botryococcus braunii, race B. J Plant Res 131:839–848. https://doi.org/10.1007/s10265-018-1039-4

Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for Isoprenoid synthesis. Annu. Rev. Plant Biol

Wang J, Liu J, Xie Z et al (2020) Design, synthesis and biological evaluation of mogrol derivatives as a novel class of AMPKα2β1γ1 activators. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2019.126790

Wang L, Yang R, Yuan B et al (2015) The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 5:310–315. https://doi.org/10.1016/j.apsb.2015.05.005

Wang Q, Chen S, Han L et al (2014) Antioxidant activity of carboxymethyl (1→3)-β-d-glucan (from the sclerotium of Poria cocos) sulfate (in vitro). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.05.038

Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79. https://doi.org/10.1016/j.synbio.2015.12.002

Wei Y, Ma CM, Hattori M (2009) Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2009.03.019

Wu GS, Guo JJ, Bao JL et al (2013) Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum-a review. Expert Opin Investig Drugs. doi: https://doi.org/10.1517/13543784.2013.805202

Xu Q-Q, Wang K-W (2020) Natural Bioactive New Withanolides. Mini-Reviews Med Chem 20:1101–1117. https://doi.org/10.2174/1389557518666171129164056

Xu W, Yao J, Liu L et al (2019) Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the Isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1415-x

Xue Z, Tan Z, Huang A et al (2018) Identification of key amino acid residues determining product specificity of 2,3-oxidosqualene cyclase in Oryza species. New Phytol 218:1076–1088. https://doi.org/10.1111/nph.15080

Yadav VR, Prasad S, Sung B et al (2010) Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2:2428–2466. https://doi.org/10.3390/toxins2102428

Yan X-J, Gong L-H, Zheng F-Y et al (2014) Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov Today 19:482–488. https://doi.org/10.1016/j.drudis.2013.07.018

Yang Y-P, Tasneem S, Daniyal M et al (2020) Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. World J Tradit Chinese Med 6:229. https://doi.org/10.4103/wjtcm.wjtcm_17_20

Yasin M, Younis A, Ramzan F et al (2021) Extraction of Essential Oil from River Tea Tree (Melaleuca bracteata F. Muell.): Antioxidant and Antimicrobial Properties. Sustainability 13:4827. https://doi.org/10.3390/su13094827

Yeh Y-S, Jheng H-F, Iwase M et al (2018) The mevalonate pathway Is indispensable for adipocyte survival. iScience 9:175–191. https://doi.org/10.1016/j.isci.2018.10.019

Yoshioka H, Coates HW, Chua NK et al (2020) A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1915923117

Zhan C, Li X, Zhao Z et al (2016) Comprehensive analysis of the triterpenoid saponins biosynthetic pathway in Anemone flaccida by transcriptome and proteome profiling. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01094

Zhang F, Liu W, Xia J et al (2018a) Molecular characterization of the 1-Deoxy-D-Xylulose 5-Phosphate synthase gene family in Artemisia annua. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00952

Zhang Y, Tian Y, Kong Y et al (2018b) Residual dense network for image Super-resolution. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern recognition. DOI: https://doi.org/10.1109/CVPR.2018.00262

Zhao D, Hamilton JP, Hardigan M et al (2017) Analysis of ribosome-associated mRNAs in rice reveals the importance of transcript size and GC content in translation. G3:Genes|Genomes|Genetics 7:203–219. https://doi.org/10.1534/g3.116.036020