Biosynthesized zinc oxide and titanium dioxide nanoparticles by aloe vera extract for tunable Q-switched application
Tài liệu tham khảo
R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H.L. Offerhaus, D.J. Richardson, R. Paschotta et al, “Passively Q-switched 0.1mJ Fiber Laser System at 1.53µm”, Optics Letters Passively Q-switched 0.1 mJ Fiber Laser System at 1.53 µm, (n.d.).
Popa, 2011, Graphene Q-switched, tunable fiber laser, Appl. Phys. Lett., 98, 073106, 10.1063/1.3552684
Siniaeva, 2009, Laser ablation of dental materials using a microsecond Nd:YAG laser, Laser Phys., 19, 1056, 10.1134/S1054660X09050314
Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, J. Weng, M. Laroche, A.M. Chardon, J. Nilsson, D.P. Shepherd, W.A. Clarkson, S. Girard, R. Moncorge, U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus, Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber, Optics Express, Vol. 22, Issue 21, Pp. 25258-25266. 22 (2014) 25258–25266. https://doi.org/10.1364/OE.22.025258.
T.K. Subramaniam, Erbium Doped Fiber Lasers for Long Distance Communication Using Network of Fiber Optics, Http://Www.Sciencepublishinggroup.Com. 3 (2015) 34. https://doi.org/10.11648/J.AJOP.20150303.11.
Dumitru, 2005, Laser processing of hardmetals: physical basics and applications, Int. J. Refract Metals Hard Mater., 23, 278, 10.1016/j.ijrmhm.2005.04.020
J. Lee, J.H. Lee, S. Ko, Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles, Chinese Optics Letters, Vol. 16, Issue 2, Pp. 020017-. 16 (2018) 020017-. https://opg.optica.org/abstract.cfm?uri=col-16-2-020017 (accessed November 4, 2022).
Samsamnun, 2020, Poly(3-hexylthiophene-2,5-diyl) regioregular (P3HT) thin film as saturable absorber for passively Q-switched and mode-locked Erbium-doped fiber laser, Opt. Fiber Technol., 54, 10.1016/j.yofte.2019.102073
Kang, 2018, Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber, Photon. Res., 6, 549, 10.1364/PRJ.6.000549
Zhou, 2010, Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber, IEEE Photon. Technol. Lett., 22, 9, 10.1109/LPT.2009.2035325
Liu, 2011, Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser, Opt. Lett., 36, 4008, 10.1364/OL.36.004008
T. Feng, D. Mao, X. Cui, M. Li, K. Song, B. Jiang, H. Lu, W. Quan, A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser, Materials 2016, Vol. 9, Page 917. 9 (2016) 917. https://doi.org/10.3390/MA9110917.
Aizi, 2019, Generation of microsecond ytterbium-doped fibre laser pulses using bismuth telluride thin film as saturable absorber (penjanaan denyutan laser gentian mikrosaat Iterbium-Terdop yang Menggunakan Filem Nipis Telurida Bismut sebagai Penyerap Boleh Tepu), Sains Malays., 48, 1289, 10.17576/jsm-2019-4806-17
Mohanraj, 2016, Transition metal dichalcogenides based saturable absorbers for pulsed laser technology, Opt. Mater. (Amst)., 60, 601, 10.1016/j.optmat.2016.09.007
Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter., 16, R829, 10.1088/0953-8984/16/25/R01
Duan, 2013, ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics, Opt. Mater. Express., 3, 1537, 10.1364/OME.3.001537
Johnson, 2004, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nano Lett., 4, 197, 10.1021/nl034780w
P. Prieto-Cortés, R.I. Álvarez-Tamayo, M. García-Méndez, M. Durán-Sánchez, A. Barcelata-Pinzón, B. Ibarra-Escamilla, Magnetron sputtered Al-doped ZnO thin film as saturable absorber for passively Q-switched Er/Yb double clad fiber laser, Laser Phys Lett. 16 (2019) 045101. https://doi.org/10.1088/1612-202X/aaff4a.
Mohd Yusoff, 2020, Low threshold Q-switched fiber laser incorporating titanium dioxide saturable absorber from waste material, Optik (Stuttg), 218
Ahmad, 2016, Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber, Appl. Opt., 55, 4277, 10.1364/AO.55.004277
Ahmad, 2019, Tunable Q-switched erbium-doped fiber laser in the C-band region using nanoparticles (TiO2), Opt Commun., 435, 283, 10.1016/j.optcom.2018.11.035
Radha, 2014, Evaluation of biological properties and clinical effectiveness of Aloe vera: a systematic review, J. Tradit. Complement Med., 5, 21, 10.1016/j.jtcme.2014.10.006
Patra, 2016, Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities, Adv. Powder Technol., 27, 2204, 10.1016/j.apt.2016.08.005
Sai Priya, 2014, Bio synthesis of cerium oxide nanoparticles using aloe barbadensis miller gel, Int. J. Sci. Res. Publ., 4
Gunalan, 2012, Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 1140, 10.1016/j.saa.2012.07.096
Muhammad, 2022, Q-switched fiber laser using a polysulfone membrane enhanced with biosynthesized zinc oxide and titanium dioxide nanoparticles for use as saturable absorber, Laser Phys., 32, 065101, 10.1088/1555-6611/ac687d
van Bao, 2021, Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement, Surf. Interfaces, 23
Ye, 2022, ZIF-8 derived TiO2/ZnO heterostructure decorated with AgNPs as SERS sensor for sensitive identification of trace pesticides, J. Alloys Compd., 901, 10.1016/j.jallcom.2022.163675
Lau, 2018, Passively mode-locked ultrashort pulse fiber laser incorporating multi-layered graphene nanoplatelets saturable absorber, J. Phys. Commun., 2, 10.1088/2399-6528/aacdbe
Rasli, 2020, Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters, Heliyon, 6, e03156, 10.1016/j.heliyon.2020.e03156
Ahmad, 2019, 85 nm wide-band tunable erbium doped fiber laser using a gallium selenide (GaSe)-based saturable absorber for passive optical modulation, Laser Phys. Lett., 16, 095101, 10.1088/1612-202X/ab2f32
Fundamentals of Photonics - Bahaa E. A. Saleh, Malvin Carl Teich - Google Books, (n.d.). https://books.google.com.my/books?hl=en&lr=&id=rcqKDwAAQBAJ&oi=fnd&pg=PR1&dq=B.E.+Saleh,+M.C.+Teich,+Fundamentals+of+photonics,+john+Wiley+%26+sons,+2019&ots=tHif7ayxr2&sig=ZbBSkD_yl30Zbs8B36nR95SDf6o#v=onepage&q=B.E.%20Saleh%2C%20M.C.%20Teich%2C%20Fundamentals%20of%20photonics%2C%20john%20Wiley%20%26%20sons%2C%202019&f=false (accessed January 6, 2023).
J. Lee, J.H. Lee, S. Ko, Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles, Chinese Optics Letters, Vol. 16, Issue 2, Pp. 020017-. 16 (2018) 020017-. https://opg.optica.org/abstract.cfm?uri=col-16-2-020017 (accessed October 13, 2022).
D. Nordin, Optical Frequency Modulated Continuous Wave (FMCW) Range and Velocity Measurements, Thesis. (2004) 110. https://www.diva-portal.org/smash/get/diva2:999065/FULLTEXT01.pdf%0Ahttp://epubl.luth.se/1402-1544/2004/43/LTU-DT-0443-SE.pdf.
Zhang, 2019, Tunable Q-Switched fiber laser based on a graphene saturable absorber without additional tuning element, IEEE Photon. J., 11, 1
Zalkepali, 2021, Tunable indium tin oxide thin film as saturable absorber for generation of passively Q-switched pulse erbium-doped fiber laser, Indian J. Phys., 95, 733, 10.1007/s12648-020-01738-y
Peng, 2022, Wavelength tunable Q-switched Er-doped fiber laser based on ZrSe 2, Opt. Laser Technol., 147, 10.1016/j.optlastec.2021.107598