Biosensing with Luminescent Semiconductor Quantum Dots

Sensors - Tập 6 Số 8 - Trang 925-953
Kim E. Sapsford1,2, Thomas Pons3,4, Igor L. Medintz1, Hedi Mattoussi4
1Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375-5320, USA
2George Mason University, 10910 University Blvd, MS 4E3, Manassas, VA 20110, USA
3Chemical & Biomolecular Eng. Dept. Johns Hopkins University, Baltimore, MD 21218 USA
4Division of Optical Sciences, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375-5320, USA.

Tóm tắt

Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET) - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s) and appropriate strategies forattaching biomolecules to the QDs.

Từ khóa


Tài liệu tham khảo

Haugland, R.P. (2005). The Handbook A Guide to Fluorescent Probes and Labeling Technologies, San Diego. [Tenth Edition].

Lakowicz, JR (1999). Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers. [Second Edition].

Giepmans, 2006, The Fluorescent Toolbox for Assessing Protein Location and Function, Science, 312, 217, 10.1126/science.1124618

Kricka, 2002, Stains, Labels and Detection Strategies for Nucleic Acids Assays, Annals of Clinical Biochemistry, 39, 114, 10.1258/0004563021901865

Chan, 1998, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281, 2016, 10.1126/science.281.5385.2016

Bruchez, 1998, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 281, 2013, 10.1126/science.281.5385.2013

Medintz, 2005, Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nature Materials, 4, 435, 10.1038/nmat1390

Michalet, 2005, Quantum Dots for Live Cells, In Vivo Imaging, and diagnostics, Science, 307, 538, 10.1126/science.1104274

Alivisatos, 2005, Quantum Dots as Cellular Probes, Ann. Rev. Biomed. Eng., 7, 55, 10.1146/annurev.bioeng.7.060804.100432

Parak, 2005, Labelling of Cells with Quantum Dots, Nanotech, 16, R9, 10.1088/0957-4484/16/2/R01

Parak, 2002, Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks, Adv. Mater., 14, 882, 10.1002/1521-4095(20020618)14:12<882::AID-ADMA882>3.0.CO;2-Y

Parak, 2003, Biological Applications of Colloidal Nanocrystals, Nanotech., 14, R15, 10.1088/0957-4484/14/7/201

Murray, 1993, Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites, J. Am. Chem. Soc., 115, 8706, 10.1021/ja00072a025

Dabbousi, 1997, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Optical and Structural Characterization of a Size Series of Highly Luminescent Materials, J. Phys. Chem. B., 101, 9463, 10.1021/jp971091y

Peng, 1997, Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc., 119, 7019, 10.1021/ja970754m

Murray, 2000, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Ann. Rev. Mater. Sci., 30, 545, 10.1146/annurev.matsci.30.1.545

Derfus, 2004, Probing the Cytotoxicity of Semiconductor Quantum Dots, NanoLett., 4, 11, 10.1021/nl0347334

Hines, 1996, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem., 100, 468, 10.1021/jp9530562

Peng, 2001, Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc., 123, 183, 10.1021/ja003633m

Ozkan, 2004, Quantum Dots and Other Nanoparticles: What Can They Offer to Drug Discovery?, Drug Discovery Today, 9, 1065, 10.1016/S1359-6446(04)03291-X

Murphy, 2002, Optical Sensing with Quantum Dots, Anal. Chem., 74, 520A, 10.1021/ac022124v

Kippeny, 2002, Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box, J. Chem. Ed., 79, 1094, 10.1021/ed079p1094

Alivisatos, 2004, The Use of Nanocrystals in Biological Detection, Nature Biotech., 22, 47, 10.1038/nbt927

Striolo, 2002, Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals, J. Phys. Chem. B., 106, 5500, 10.1021/jp020170t

Leatherdale, 2002, On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots, J. Phys. Chem. B., 106, 7619, 10.1021/jp025698c

Schrock, 1996, Multicolor Spectral Karyotyping of Human Chromosomes, Science, 273, 494, 10.1126/science.273.5274.494

Bailey, 2004, Quantum Dots in Biology and Medicine, Physica E-Low-Dimensional Systems & Nanostructures, 25, 1, 10.1016/j.physe.2004.07.013

Pellegrino, 2005, On the Development of Colloidal Nanoparticles Towards Multifunctional Structures and Their Possible Use for Biological Applications, Small, 1, 48, 10.1002/smll.200400071

Riegler, 2004, Application of Luminescent Nanocrystals as Labels for Biological Molecules, Anal. Bioanal. Chem., 379, 913, 10.1007/s00216-004-2706-y

Hermanson, G.T. (1996). Bioconjugate Techniques, Academic Press.

Zhang, 2000, Quantum Dot-Labeled Trichosanthin, Analyst, 125, 1029, 10.1039/b002666m

Berti, 2001, Energy Transfer Cassettes for Facile Labeling of Sequencing and PCR Primers, Anal. Biochem., 292, 188, 10.1006/abio.2001.5069

Goldman, 2006, Luminescent Quantum Dots in Immunoassays, Anal. Bioanal. Chem., 384, 560, 10.1007/s00216-005-0212-5

Mattoussi, 2000, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc., 122, 12142, 10.1021/ja002535y

Zhang, 2006, Investigation of Novel Quantum Dots/Proteins/Cellulose Bioconjugate using NSOM and Fluorescence, J. Fluorescence, 16, 349, 10.1007/s10895-005-0058-4

Slocik, 2002, Monoclonal Antibody Recognition of Histidine-Rich Peptide Encapsulated Nanoclusters, NanoLett., 2, 169, 10.1021/nl015706l

Sandros, 2005, A Modular Nanoparticle-Based System for Reagentless Small Molecule Biosensing, J. Am. Chem. Soc., 127, 12198, 10.1021/ja054166h

Sandros, 2005, General, High-Affinity Approach for the Synthesis of Fluorophore Appended Protein Nanoparticle Assemblies, Chem. Comm., 22, 2832, 10.1039/b501315a

Sandros, 2006, Selective, Reversible, Reagentless Maltose Biosensing with Core-Shell Semiconducting Nanoparticles, The Analyst, 131, 229, 10.1039/B511591D

Medintz, 2003, Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors, Nature Materials, 2, 630, 10.1038/nmat961

Ding, 2004, Bioconjugation of (CdSe)ZnS Quantum Dots Using a Genetically Engineered Multiple Polyhistidine Tagged Cohesin/Dockerin Protein Polymer, Macromol. Mat. Eng., 289, 622, 10.1002/mame.200400081

Ding, 2003, Quantum Dot Molecules Assembled with Genetically Engineered Proteins, NanoLetters, 3, 1581, 10.1021/nl034578t

Pinaud, 2004, Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides, J. Am. Chem. Soc., 126, 6115, 10.1021/ja031691c

Tsay, 2006, Rotational and Translational Diffusion of Peptide-Coated CdSe/CdS/ZnS Nanorods Studied by Fluorescence Correlation Spectroscopy, J. Am. Chem. Soc., 128, 1639, 10.1021/ja056162i

Tsay, 2005, Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation, J. Phys. Chem. B, 109, 1669, 10.1021/jp046828f

Ji, 2005, (CdSe)ZnS Quantum Dots and Organophosphorus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon, J. Phys. Chem. B, 109, 3793, 10.1021/jp044928f

Constantine, 2003, Layer-by-Layer Films of Chitosan, Organophosphorus Hydrolase and Thioglycolic Acid-Capped CdSe Quantum Dots for the Detection of Paraoxon, J. Phys. Chem. B, 107, 13762, 10.1021/jp036381v

Constantine, 2003, Layer-by-Layer Biosensor Assembly Incorporating Functionalized Quantum Dots, Langmuir, 19, 9863, 10.1021/la035237y

Goldman, 2005, Fluoroimmunoassays Using Antibody-Conjugated Quantum Dots, Methods Molecular Biology, 303, 19

Goldman, 2002, Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein to Provide New Reagents for Fluoroimmunoassays, Anal. Chem., 74, 841, 10.1021/ac010662m

Goldman, 2002, Luminescent Quantum Dot-Adaptor Protein-Antibody Conjugates for Use in Fluoroimmunoassays, Phys. Stat. Sol. B., 229, 407, 10.1002/1521-3951(200201)229:1<407::AID-PSSB407>3.0.CO;2-S

Goldman, 2002, Avidin: A Natural Bridge for Quantum Dot-Antibody Conjugates, J. Am. Chem. Soc., 124, 6378, 10.1021/ja0125570

Goldman, 2004, Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents, Anal. Chem., 76, 684, 10.1021/ac035083r

Goldman, 2005, Self-Assembled Luminescent CdSe-ZnS Quantum Dot Bioconjugates Prepared Using Engineered Poly-Histidine Terminated Proteins, Analytica Chimica Acta, 534, 63, 10.1016/j.aca.2004.03.079

Goldman, 2005, A Hybrid Quantum Dot-Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor, J. Am. Chem. Soc., 127, 6744, 10.1021/ja043677l

Mamedova, 2001, Albumin-CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect, NanoLett., 1, 281, 10.1021/nl015519n

Hanaki, 2003, Semiconductor Quantum Dot/Albumin Complex is a Long-Life and Highly Photostable Endosome Marker, Biochem. Biophys. Res. Comm., 302, 496, 10.1016/S0006-291X(03)00211-0

Wang, 2002, Application of Functionalized CdS Nanoparticles as Fluorescence Probe in the Determination of Nucleic Acids, Analyst, 127, 977, 10.1039/b200253c

Wang, 2002, Fluorescence for the Determination of Protein with Functionalized Nano-ZnS, Analyst, 127, 1531, 10.1039/b206587h

Zhu, 2004, Application of L-Cysteine-Capped Nano-ZnS as a Fluorescence Probe for the Determination of Proteins, Anal. Bioanal. Chem., 378, 811, 10.1007/s00216-003-2338-7

Lin, 2003, Studies on Quantum Dots Synthesized in Aqueous Solution for Biological Labeling Via Electrostatic Interaction, Analytical Biochemistry, 319, 239, 10.1016/S0003-2697(03)00287-2

Chen, 2005, Functionalized Semiconductor Nanocrystals for Ultrasensitive Detection of Peptides, Analytica Chimica Acta, 542, 144, 10.1016/j.aca.2005.03.071

Liang, 2006, CdSe Quantum Dots as Luminescent Probes for Spironolactone Determination, Talanta, 69, 126, 10.1016/j.talanta.2005.09.004

Leblanc, 2003, Peptide-Coated CdS Quantum Dots for the Optical Detection of Copper(II) and Silver(I), Chemical Comm., 21, 2684

Bo, 2005, A New Determining Method of Copper(III) Ions at ng ml(-1) Levels Based on Quenching of the Water-Soluble Nanocrystals Fluorescence, Anal. Bioanal. Chem., 381, 986, 10.1007/s00216-004-2963-9

Wang, 2005, Preparation and Application of a Novel Core/Shell Organic Nanoparticle as a Fluorescence Probe in the Selective Determination of Cr(VI), Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 62, 565, 10.1016/j.saa.2004.11.069

She, 2005, Preparation of Fluorescent Polyvinyl Alcohol Keto-Derivatives Nanoparticles and Selective Determination of Chromium(VI), Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 62, 711, 10.1016/j.saa.2005.02.040

Jin, 2005, Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions, Chem. Comm., 7, 883, 10.1039/B414858D

Wang, 2002, Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates, NanoLetters, 2, 817, 10.1021/nl0255193

Sun, 2001, Microminiaturized Immunoassays Using Quantum Dots as Fluorescent Label by Laser Confocal Scanning Fluorescence Detection, J. Immunological Methods, 249, 85, 10.1016/S0022-1759(00)00331-8

Li, 2005, Prototype of Immunochromatographic Assay Strips Using Colloidal CdTe Nanocrystals as Biological Luminescent Label, Colloids and Surfaces B-Biointerfaces, 40, 179, 10.1016/j.colsurfb.2004.10.017

Zahavy, 2005, Double Labeling and Simultaneous Detection of B- and T- Cells Using Fluorescent Nanocrystal (Q-Dots) in Paraffin-Embedded Tissues, J.Fluorescence, 15, 661, 10.1007/s10895-005-2972-x

Wang, 2004, Detection of Tumor Marker CA125 in Ovarian Carcinoma Using Quantum Dots, Acta Biochimica Et Biophysica Sinica, 36, 681, 10.1093/abbs/36.10.681

Colton, 2004, Visualization and Quantitation of Peroxisomes using Fluorescent Nanocrystals: Treatment of Rats and Monkeys with Fibrates and Detection in the Liver, Toxicological Sciences, 80, 183, 10.1093/toxsci/kfh144

Stsiapura, 2004, Functionalized Nanocrystal-Tagged Fluorescent Polymer Beads: Synthesis, Physicochemical Characterization, and Immunolabeling Application, Analytical Biochemistry, 334, 257, 10.1016/j.ab.2004.07.006

Jaiswal, 2004, Use of Quantum Dots for Live Cell Imaging, Nature Methods, 1, 73, 10.1038/nmeth1004-73

Ornberg, 2005, Western Blot Analysis with Quantum Dot Fluorescence Technology: a Sensitive and Quantitative Method for Multiplexed Proteomics, Nature Methods, 2, 79, 10.1038/nmeth0105-79

Makrides, 2005, Bioconjugation of Quantum Dot Luminescent Probes for Western Blot Analysis, Biotechniques, 39, 501, 10.2144/000112004

Bakalova, 2005, Quantum Dot-Based Western Blot Technology for Ultrasensitive Detection of Tracer Proteins, J. Am. Chem. Soc., 127, 3928, 10.1021/ja0510055

Zhelev, 2006, Uncoated, Broad Fluorescent, and Size-Homogeneous CdSe Quantum Dots for Bioanalyses, Anal. Chem., 78, 321, 10.1021/ac0511896

Geho, 2005, Pegylated, Streptavidin-Conjugated Quantum dots are effective Detection Elements for Reverse-Phase Protein Microarrays, Bioconj. Chem., 16, 559, 10.1021/bc0497113

Santos, 2005, Investigation of Red Blood Cell Antigens with Highly Fluorescent and Stable Semiconductor Quantum Dots, J. Biomedical Optics, 10, 44023, 10.1117/1.1993257

Otsuka, 2004, Detection of Mycobacterium bovis bacillus Calmette-Guerin Using Quantum Dot Immuno-Conjugates, Japanese J. Infect. Diseases, 57, 183

Lee, 2004, Use of Semiconductor Quantum Dots for Photostable Immunofluorescence Labeling of Cryptosporidium parvum, App. Environ. Microbiol, 70, 5732, 10.1128/AEM.70.10.5732-5736.2004

Zhu, 2004, Quantum Dots as a Novel Immunofluorescent Detection System for Cryptosporidium parvum and Giardia lamblia, App. Environ. Microbiol., 70, 597, 10.1128/AEM.70.1.597-598.2004

Hahn, 2005, Detection of Single Bacterial Pathogens with Semiconductor Quantum Dots, Analyical Chemistry, 77, 4861, 10.1021/ac050641i

Yang, 2006, Simultaneous Detection of Escherichia coli O157:H7 and Salmonella Typhimurium Using Quantum Dots as Fluorescence Labels, Analyst, 131, 394, 10.1039/B510888H

Zhang, 2006, Microbial Detection in Microfluidic Devices Through Dual Staining of Quantum Dots-Labeled Immunoassay and RNA Hybridization, Analytica Chimica Acta, 556, 171, 10.1016/j.aca.2005.07.003

Liu, 2005, Microfluidic Device as a New Platform for Immunofluorescent Detection of Viruses, Lab on a Chip, 5, 1327, 10.1039/b509086e

Bentzen, 2005, Progression of Respiratory Syncytial Virus Infection Monitored by Fluorescent Quantum Dot Probes, NanoLett., 5, 591, 10.1021/nl048073u

Hoshino, 2005, Simultaneous Multicolor Detection System of the Single-Molecular Microbial Antigen with Total Internal Reflection Fluorescence Microscopy, Microbiology & Immunology, 49, 461, 10.1111/j.1348-0421.2005.tb03750.x

Gerion, 2002, Sorting Fluorescent Nanocrystals with DNA, J. Am. Chem. Soc., 124, 7070, 10.1021/ja017822w

Gerion, 2003, Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays, Anal. Chem., 75, 4766, 10.1021/ac034482j

Shepard, 2006, Polychromatic Microarrays: Simultaneous Multicolor Array Hybridization of Eight Samples, Anal. Chem., 78, 2478, 10.1021/ac060011w

Liang, 2005, An Oligonucleotide Microarray for microRNA Expression Analysis Based on Labeling RNA with Quantum Dot and NanogoldPprobe, Nucleic Acids Research, 33, e17, 10.1093/nar/gni019

Pathak, 2001, Hydroxylated Quantum Dots as Luminescent Probes for In Situ Hybridization, J. Am. Chem. Soc., 123, 4103, 10.1021/ja0058334

Xu, 2003, Multiplexed SNP Genotyping Using the Qbead (TM) System: a Quantum Dot-Encoded Microsphere-Based Assay, Nucleic Acids Research, 31, e43, 10.1093/nar/gng043

Meissner, 2003, Quantum-Dot Tagged Microspheres for Fluid-Based Microarrays, Physica Status Solidi (c), 4, 1355, 10.1002/pssc.200303092

Han, 2001, Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules, Nature Biotech., 19, 631, 10.1038/90228

Ho, 2005, Multiplexed Hybridization Detection with Multicolor Colocalization of Quantum Dot Nanoprobes, NanoLett., 5, 1693, 10.1021/nl050888v

Chan, 2005, Method for Multiplex Cellular Detection of mRNAs Using Quantum Dot Fluorescent In Situ Hybridization, Nucleic Acids Research, 33, e161, 10.1093/nar/gni162

Xiao, 2004, Semiconductor Nanocrystal Probes for Human Metaphase Chromosomes, Nucleic Acids Research., 32, e161, 10.1093/nar/gnh024

Bakalova, 2005, Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences, J. Am. Chem. Soc., 127, 11328, 10.1021/ja051089h

Crut, 2005, Detection of Single DNA Molecules by Multicolor Quantum-Dot End-Labeling, Nucleic Acids Research, 33, e98, 10.1093/nar/gni097

Sapsford, 2005, Fluorescence Resonance Energy Transfer Concepts, Applications and Advances, Minerva Biotech, 16, 253

Jovin, 2003, FRET Imaging, Nature Biotech., 21, 1387, 10.1038/nbt896

Miyawaki, 2003, Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling, Dev. Cell, 4, 295, 10.1016/S1534-5807(03)00060-1

Clapp, 2006, Forster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores, ChemPhysChem, 7, 47, 10.1002/cphc.200500217

Clapp, 2004, Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors, J. Am. Chem. Soc., 126, 301, 10.1021/ja037088b

Clapp, 2005, Quantum Dot-Based Multiplexed Fluorescence Resonance Energy Transfer, J. Am. Chem. Soc., 127, 18212, 10.1021/ja054630i

Medintz, 2003, A Fluorescence Resonance Energy Transfer Sensor Based on Maltose Binding Protein, Bioconj. Chem., 14, 909, 10.1021/bc020062+

Levy, 2005, Quantum-Dot Aptamer Beacons for the Detection of Proteins, Chembiochem, 6, 2163, 10.1002/cbic.200500218

Medintz, 2005, A Reagentless Biosensing Assembly Based on Quantum Dot-Donor Forster Resonance Energy Transfer, Adv. Mat., 17, 2450, 10.1002/adma.200500722

Patolsky, 2003, Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots, J. Am. Chem. Soc., 125, 13918, 10.1021/ja035848c

Gill, 2005, Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing hybridization and DNA cleavage, J. Phys. Chem. B, 109, 23715, 10.1021/jp054874p

Kim, 2004, Adaptation of Inorganic Quantum Dots for Stable Molecular Beacons, Sensors Actuators B-Chemical, 102, 315, 10.1016/j.snb.2004.04.107

Zhang, 2005, Single-Quantum-Dot-Based DNA Nanosensor, Nature Materials, 4, 826, 10.1038/nmat1508

Dubertret, 2005, Quantum Dots - DNA Detectives, Nature Materials, 4, 797, 10.1038/nmat1520

Goldman, 2005, A Hybrid Quantum Dot-Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor, J. Am. Chem. Soc., 127, 6744, 10.1021/ja043677l

Gueroui, 2004, Single-Molecule Measurements of Gold-Quenched Quantum Dots, Physical Review Letters, 93, 166108, 10.1103/PhysRevLett.93.166108

Chang, 2005, Protease-Activated Quantum Dot Probes, Biochem. Biophys. Res. Comm., 334, 1317, 10.1016/j.bbrc.2005.07.028

Dyadyusha, 2005, Quenching of CdSe Quantum Dot Emission, a New Approach for Biosensing, Chem. Comm., 25, 3201, 10.1039/b500664c

Clapp, 2005, Can Luminescent Quantum Dots be Efficient Energy Acceptors with Organic Dye Donors?, J. Am. Chem. Soc., 127, 1242, 10.1021/ja045676z

So, 2006, Self-Illuminating Quantum Dot Conjugates for In Vivo Imaging, Nature Biotech., 24, 339, 10.1038/nbt1188

Hansen, 2006, Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor, J. Am. Chem. Soc., 128, 2228, 10.1021/ja060005h

Wang, 2003, Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets, J. Am. Chem. Soc., 125, 3214, 10.1021/ja029668z

Smith, 2002, Construction of a Fluorescent Biosensor Family, Protein Science, 11, 2655, 10.1110/ps.021860

Ipe, 2005, On the Generation of Free Radical Species From Quantum Dots, Small, 1, 706, 10.1002/smll.200500105

Clarke, 2006, Photophysics of Dopamine-Modified Quantum Dots and Effects on Biological Systems, Nat. Materials, 5, 409, 10.1038/nmat1631

Niehren, 1995, An All-Solid-State Flow Cytometer for Counting Fluorescent Microspheres, Anal. Chem., 67, 2666, 10.1021/ac00111a027

Morseman, 1999, PBXL-1: A New Fluorochrome Applied to Detection of Proteins on Membranes, Biotechniques, 26, 559, 10.2144/99263pf02

Sapsford, 2006, A Cowpea Mosaic Virus Nanoscaffold for Multiplexed Antibody Conjugation: Application As An Immunoassay Tracer, Biosensors & Bioelectronics, 21, 1668, 10.1016/j.bios.2005.09.003

Medintz, 2004, A Fluorescence Resonance Energy Transfer Derived Structure of a Quantum Dot-Protein Bioconjugate Nanoassembly, P. N. A. S. U. S. A., 101, 9612, 10.1073/pnas.0403343101

Tsien, 1998, The Green Fluorescent Protein, Ann. Rev. Bioch., 67, 509, 10.1146/annurev.biochem.67.1.509

Wu, 2003, Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots, Nature Biotech., 21, 41, 10.1038/nbt764

Jaiswal, 2004, Potentials and Pitfalls of Fluorescent Quantum Dots for Biological Imaging, Trends in Cell Biology, 14, 497, 10.1016/j.tcb.2004.07.012

Larson, 2003, Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging In Vivo, Science, 300, 1434, 10.1126/science.1083780

Lidke, 2004, Imaging Takes a Quantum Leap, Physiology, 19, 322, 10.1152/physiol.00030.2004

Kuno, 2001, ‘On’/‘Off’ Fluorescence Intermittency of Single Semiconductor Quantum Dots, J. Chem. Phys., 115, 1028, 10.1063/1.1377883

Wang, 2001, Electrochromic Nanocrystal Quantum Dots, Science, 291, 2390, 10.1126/science.291.5512.2390