Biosensing platforms based on silicon nanostructures: A critical review
Tài liệu tham khảo
Faro, 2019, Fractal silver dendrites as 3D SERS platform for highly sensitive detection of biomolecules in hydration conditions, Nanomaterials, 9
Im, 2014, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor, Nat. Biotechnol., 32, 490, 10.1038/nbt.2886
Breger, 2020, Quantum dot lipase biosensor utilizing a custom-synthesized peptidyl-ester substrate, ACS Sens., 5, 1295, 10.1021/acssensors.9b02291
Zhao, 2020, Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection, Microchem. J., 155, 104675, 10.1016/j.microc.2020.104675
Hjiri, 2013, CO and NO2 selective monitoring by ZnO-based sensors, Nanomaterials, 3, 357, 10.3390/nano3030357
Genner, 2020, A quantum cascade laser-based multi-gas sensor for ambient air monitoring, Sensors, 20, 1850, 10.3390/s20071850
Arunachalam, 2020, Ionization gas sensor using suspended carbon nanotube beams, Sensors, 20, 1660, 10.3390/s20061660
Zhang, 2019, High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering, Sensors, 20, 149, 10.3390/s20010149
Nakate, 2020, Ultra thin NiO nanosheets for high performance hydrogen gas sensor device, Appl. Surf. Sci., 506, 144971, 10.1016/j.apsusc.2019.144971
Engel, 2010, Supersensitive detection of explosives by silicon nanowire arrays, Angew. Chem. Int. Ed., 49, 6830, 10.1002/anie.201000847
Sharma, 2020, Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium, Opt. Mater., 100, 109646, 10.1016/j.optmat.2019.109646
Yang, 2020, Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber, Sensor. Actuator. B Chem., 306, 127585, 10.1016/j.snb.2019.127585
Li, 2020, Active self-assembled monolayer sensors for trace explosive detection, Langmuir, 36, 1462, 10.1021/acs.langmuir.9b03742
Zhang, 2020, Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives, Sensor. Actuator. B Chem., 304, 127233, 10.1016/j.snb.2019.127233
Chen, 2008, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Res., 18, 997, 10.1038/cr.2008.282
Morrow, 2003, Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy, Circulation, 108, 250, 10.1161/01.CIR.0000078080.37974.D2
Jhala, 2006, Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates, Am. J. Clin. Pathol., 126, 572, 10.1309/CEV30BE088CBDQD9
Fremont, 2010, Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis, J. Trauma Inj. Infect. Crit. Care, 68, 1121
Schuetz, 2015, Biomarker-guided personalised emergency medicine for all - hope for another hype?, Swiss Med. Wkly., 145
Whicher, 1982, Immunonephelometric and immunoturbidimetric assays for proteins, Crit. Rev. Clin. Lab Sci., 18, 213, 10.3109/10408368209085072
Denham, 2007, Evaluation of immunoturbidimetric specific protein methods using the Architect ci8200: comparison with immunonephelometry, Ann. Clin. Biochem., 44, 529, 10.1258/000456307782268237
Eckersall, 1991, An immunoturbidimetric assay for canine C-reactive protein, Vet. Res. Commun., 15, 17, 10.1007/BF00497786
Chambers, 1987, Overestimation of immunoglobulins in the presence of rheumatoid factor by kinetic immunonephelometry and rapid immunoturbidimetry, Ann. Clin. Biochem., 24, 520, 10.1177/000456328702400518
Bakker, 1988, Immunoturbidimetry of urinary albumin: prevention of adsorption of albumin; influence of other urinary constituents, Clin. Chem., 34, 82, 10.1093/clinchem/34.1.82
Lequin, 2005, Enzyme immunoassay (EIA)/Enzyme-Linked immunosorbent assay (ELISA), Clin. Chem., 51, 2415, 10.1373/clinchem.2005.051532
Gan, 2013, Enzyme immunoassay and enzyme-linked immunosorbent assay, J. Invest. Dermatol., 133, 1, 10.1038/jid.2013.287
Zhang, 2013, Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general, Analyst, 139, 439, 10.1039/C3AN01835K
Irrera, 2018, New generation of ultrasensitive label-free optical Si nanowire-based biosensors, ACS Photonics, 5, 471, 10.1021/acsphotonics.7b00983
Punyadeera, 2011, One-step homogeneous C-reactive protein assay for saliva, J. Immunol. Methods, 373, 19, 10.1016/j.jim.2011.07.013
Zhao, 2003, Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles, J. Am. Chem. Soc., 125, 11474, 10.1021/ja0358854
Sierks, 2011, CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease, Integr. Biol., 3, 1188, 10.1039/c1ib00018g
An, 2015, Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons’s model, Biosens. Bioelectron., 67, 739, 10.1016/j.bios.2014.10.049
Heid, 1996, Real time quantitative PCR, Genome Res., 6, 101, 10.1101/gr.6.10.986
Mackay, 2004, Real-time PCR in the microbiology laboratory, Clin. Microbiol. Infect., 10, 190, 10.1111/j.1198-743X.2004.00722.x
Almassian, 2013, Portable nucleic acid thermocyclers, Chem. Soc. Rev., 42, 8769, 10.1039/c3cs60144g
Nurmi, 2002, High-performance real-time quantitative RT-PCR using lanthanide probes and a dual-temperature hybridization assay, Anal. Chem., 74, 3525, 10.1021/ac020093y
Forootan, 2017, Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR), Biomol. Detect. Quantif., 12, 1, 10.1016/j.bdq.2017.04.001
Hoy, 2013, DNA amplification by the Polymerase chain reaction, 307
Mabey, 2004, Diagnostics for the developing world, Nat. Rev. Microbiol., 2, 231, 10.1038/nrmicro841
Yoon, 2009, Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges, Adv. Funct. Mater., 19, 1567, 10.1002/adfm.200801141
Xu, 2009, Recent development of nano-materials used in DNA biosensors, Sensors, 9, 5534, 10.3390/s90705534
Ma, 2020, Serum IgA, IgM, and IgG responses in COVID-19, cell, Mol. Immunol., 17, 773, 10.1038/s41423-020-0474-z
COVID-19 IgM/IgG Rapid Test – BioMedomics Inc., (n.d.). https://www.biomedomics.com/products/infectious-disease/covid-19-rt/(accessed July 22, 2020).
Cui, 2003, High performance silicon nanowire field effect transistors, Nano Lett., 3, 149, 10.1021/nl025875l
Noor, 2014, Silicon nanowires as field-effect transducers for biosensor development: a review, Anal. Chim. Acta, 825, 1, 10.1016/j.aca.2014.03.016
Bergveld, 1985, The impact of MOSFET-based sensors, Sensor. Actuator., 8, 109, 10.1016/0250-6874(85)87009-8
Gao, 2013, Integration of microfluidic system with silicon nanowires biosensor for multiplexed detection, 333
Shehada, 2016, Silicon nanowire sensors enable diagnosis of patients via exhaled breath, ACS Nano, 10, 7047, 10.1021/acsnano.6b03127
Kim, 2014, Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor, Biosens. Bioelectron., 55, 162, 10.1016/j.bios.2013.12.014
Kwon, 2011, In-situ detection of c-reactive protein using silicon nanowire field effect transistor, J. Nanosci. Nanotechnol., 1511, 10.1166/jnn.2011.3417
Bunimovich, 2006, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution, J. Am. Chem. Soc., 128, 16323, 10.1021/ja065923u
Ahmad, 2018, Recent advances in nanowires-based field-effect transistors for biological sensor applications, Biosens. Bioelectron., 100, 312, 10.1016/j.bios.2017.09.024
Li, 2016, Direct real-time detection of single proteins using silicon nanowire-based electrical circuits, Nanoscale, 8, 16172, 10.1039/C6NR04103E
Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711
Tran, 2018, CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization, Materials, 11, 785, 10.3390/ma11050785
Kim, 2016, Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity, Biosens. Bioelectron., 77, 695, 10.1016/j.bios.2015.10.008
McDonnell, 2009, Cardiac biomarkers and the case for point-of-care testing, Clin. Biochem., 42, 549, 10.1016/j.clinbiochem.2009.01.019
Mahajan, 2011, How to interpret elevated cardiac troponin levels, Circulation, 124, 2350, 10.1161/CIRCULATIONAHA.111.023697
Chen, 2011, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, 6, 131, 10.1016/j.nantod.2011.02.001
Patolsky, 2005, Nanowire nanosensors, mater, Today Off., 8, 20
Patolsky, 2006, Nanowire sensors for medicine and the life sciences, Nanomedicine, 1, 51, 10.2217/17435889.1.1.51
Gao, 2014, Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays, Nanoscale, 6, 13036, 10.1039/C4NR03210A
Lu, 2014, Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays, ACS Appl. Mater. Interfaces, 6, 20378, 10.1021/am505915y
Puppo, 2014, High sensitive detection in tumor extracts with SiNW-FET in-air biosensors, 866
Tran, 2016, Toward intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire field effect transistors, ACS Nano, 10, 2357, 10.1021/acsnano.5b07136
Hsu, 2015, Multiple silicon nanowires with enzymatic modification for measuring glucose concentration, Micromachines, 6, 1135, 10.3390/mi6081135
Nuzaihan, 2016, Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control, Biosens. Bioelectron., 83, 106, 10.1016/j.bios.2016.04.033
M. N, 2016, Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications, PloS One, 11, 10.1371/journal.pone.0152318
Schmidt, 2010, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110, 361, 10.1021/cr900141g
Hochbaum, 2005, Controlled growth of Si nanowire arrays for device integration, Nano Lett., 5, 457, 10.1021/nl047990x
Zhu, 2009, Mechanical properties of Vapor−Liquid−Solid synthesized silicon nanowires, Nano Lett., 9, 3934, 10.1021/nl902132w
Leonardi, 2020, CMOS-compatible and low-cost thin film MACE approach for light-emitting Si NWs fabrication, Nanomaterials, 10, 966, 10.3390/nano10050966
Coffer, 2014
Randall, 2005, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proc. Natl. Acad. Sci. U. S. A, 102, 10813, 10.1073/pnas.0503287102
Zimmermann, 2007, Capillary pumps for autonomous capillary systems, Lab Chip, 7, 119, 10.1039/B609813D
Woias, 2005, Micropumps—past, progress and future prospects, Sensor. Actuator. B Chem., 105, 28, 10.1016/S0925-4005(04)00108-X
Tan, 2006, Microfluidic design for bio-sample delivery to silicon nanowire biosensor - a simulation study, J. Phys. Conf. Ser., 34, 626, 10.1088/1742-6596/34/1/103
Hemmilä, 2014, Integration of microfluidic sample delivery system on silicon nanowire-based biosensor, Microsyst. Technol., 21, 571, 10.1007/s00542-014-2076-0
Lee, 2010, Silicon nanowires for high-sensitivity CRP detection, Proc. IEEE Sensors, 415
Lee, 2017, Metal-coated microfluidic channels: an approach to eliminate streaming potential effects in nano biosensors, Biosens. Bioelectron., 87, 447, 10.1016/j.bios.2016.08.065
Thust, 1996, Porous silicon as a substrate material for potentiometric biosensors, Meas. Sci. Technol., 7, 26, 10.1088/0957-0233/7/1/003
Mulloni, 2000, Porous silicon microcavities as optical chemical sensors, Appl. Phys. Lett., 76, 2523, 10.1063/1.126396
Dhanekar, 2013, Porous silicon biosensor: current status, Biosens, Bioelectron, 41, 54, 10.1016/j.bios.2012.09.045
Bisi, 2000, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38, 1, 10.1016/S0167-5729(99)00012-6
Harraz, 2014, Porous silicon chemical sensors and biosensors: a review, Sensor. Actuator. B Chem., 202, 897, 10.1016/j.snb.2014.06.048
Lewis, 2005, Sensitive, selective, and analytical improvements to a porous silicon gas sensor, Sensor. Actuator. B Chem., 110, 54, 10.1016/j.snb.2005.01.014
Baratto, 2002, Multiparametric porous silicon sensors, Sensors, 2, 121, 10.3390/s20300121
Reta, 2019, Label-free bacterial toxin detection in water supplies using porous silicon nanochannel sensors, ACS Sens., 4, 1515, 10.1021/acssensors.8b01670
Foglieni, 2010, Integrated PCR amplification and detection processes on a Lab-on-Chip platform: a new advanced solution for molecular diagnostics, Clin. Chem. Lab. Med., 48, 329, 10.1515/CCLM.2010.063
Baldwin, 2002, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device, Anal. Chem., 74, 3690, 10.1021/ac011188n
Tsopela, 2016, Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis, Biosens. Bioelectron., 79, 568, 10.1016/j.bios.2015.12.050
Brett, 1993
Simões, 2017, Electrochemical sensors, 155
Bronzino, 2018
Li, 2012
Thévenot, 2001, Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 16, 121, 10.1016/S0956-5663(01)00115-4
Al-Hardan, 2016, High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor, Sensors, 16, 839, 10.3390/s16060839
Xu, 2015, Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule, Meas. J. Int. Meas. Confed., 64, 49, 10.1016/j.measurement.2014.12.044
Chen, 2015, On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment, Sensor. Actuator. B Chem., 209, 658, 10.1016/j.snb.2014.12.025
Das, 2014, Highly sensitive palladium oxide thin film extended gate FETs as pH sensor, Sensor. Actuator. B Chem., 205, 199, 10.1016/j.snb.2014.08.057
Song, 2007, Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode, J. Biosci. Bioeng., 103, 32, 10.1263/jbb.103.32
Kumar Reddy, 2003, Estimation of triglycerides by a porous silicon based potentiometric biosensor, Curr. Appl. Phys., 3, 155, 10.1016/S1567-1739(02)00194-3
Setzu, 2007, Porous silicon-based potentiometric biosensor for triglycerides, Phys. Status Solidi, 204, 1434, 10.1002/pssa.200674378
Yun, 2012, Fabrication and electrochemical characterization of nanoporous silicon electrode for Amperometric urea biosensor, Jpn. J. Appl. Phys., 51, 10.1143/JJAP.51.06FG02
Archer, 2004, Macroporous silicon electrical sensor for DNA hybridization detection, Biomed. Microdevices, 6, 203, 10.1023/B:BMMD.0000042049.85425.af
Jin, 2010, Fabrication and electroanalytical characterization of label-free DNA sensor based on direct electropolymerization of pyrrole on p-type porous silicon substrates, J. Porous Mater., 17, 169, 10.1007/s10934-009-9277-4
Archer, 2003, Electrical sensing of DNA hybridization in porous silicon layers, Phys. Status Solidi, 198, 503, 10.1002/pssa.200306641
Sailor, 2012
Lehmann, 1991, Porous silicon formation: a quantum wire effect, Appl. Phys. Lett., 58, 856, 10.1063/1.104512
Karbassian, 2014, Luminescent porous silicon prepared by reactive ion etching, J. Phys. D Appl. Phys., 47, 385103, 10.1088/0022-3727/47/38/385103
Chiappini, 2010, Tailored porous silicon microparticles: fabrication and properties, ChemPhysChem, 11, 1029, 10.1002/cphc.200900914
Song, 2004, Thermal conductivity of periodic microporous silicon films, Appl. Phys. Lett., 84, 687, 10.1063/1.1642753
De Stefano, 2019, Porous silicon optical biosensors: still a promise or a failure?, Sensors, 19, 4776, 10.3390/s19214776
Ensafi, 2014, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite, Electrochim. Acta, 123, 219, 10.1016/j.electacta.2014.01.031
Guo, 2019, Porous silicon nanostructures as effective faradaic electrochemical sensing platforms, Adv. Funct. Mater., 29, 1809206, 10.1002/adfm.201809206
Dey, 2018, Semiconductor metal oxide gas sensors: a review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 229, 206, 10.1016/j.mseb.2017.12.036
Mirzaei, 2016, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review, Ceram. Int., 42, 15119, 10.1016/j.ceramint.2016.06.145
Lin, 1997, A porous silicon-based optical interferometric biosensor, Science, 278, 840, 10.1126/science.278.5339.840
Nassiopoulou, 2007, Porous silicon for sensor applications, 189
Dhanekar, 2016, Optical measurement of trace level water vapours using functionalized porous silicon: selectivity studies, RSC Adv., 6, 72371, 10.1039/C6RA12669C
Syshchyk, 2015, Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosens. Bioelectron., 66, 89, 10.1016/j.bios.2014.10.075
Fauchet, 1996, Photoluminescence and electroluminescence from porous silicon, J. Lumin., 70, 294, 10.1016/0022-2313(96)82860-2
Credo, 1999, External quantum efficiency of single porous silicon nanoparticles, Appl. Phys. Lett., 74, 1978, 10.1063/1.123719
Chiappini, 2010, Biodegradable porous silicon barcode nanowires with defined geometry, Adv. Funct. Mater., 20, 2231, 10.1002/adfm.201000360
Urmann, 2015, Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds, Anal. Chem., 87, 1999, 10.1021/ac504487g
De Stefano, 2007, Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors, Phys. Status Solidi, 4, 1941, 10.1002/pssc.200674336
Moretti, 2007, I. Rendina, Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors, Appl. Phys. Lett., 90, 191112, 10.1063/1.2737391
Korotcenkov, 2019, How to improve the performance of porous silicon-based gas and vapor sensors? Approaches and achievements, Phys. Status Solidi, 216, 1900348, 10.1002/pssa.201900348
Chan, 2000, Porous silicon microcavities for biosensing applications, Phys. Status Solidi, 182, 541, 10.1002/1521-396X(200011)182:1<541::AID-PSSA541>3.0.CO;2-#
Mariani, 2018, Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing, Nat. Commun., 9, 1, 10.1038/s41467-018-07723-8
Chhasatia, 2017, Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor, Biosens. Bioelectron., 91, 515, 10.1016/j.bios.2017.01.004
Maniya, 2020, Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection, Mater. Sci. Semicond. Process., 115, 105126, 10.1016/j.mssp.2020.105126
Mariani, 2016, 10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors, ACS Sens., 1, 1471, 10.1021/acssensors.6b00634
Vilensky, 2015, Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection, Adv. Funct. Mater., 25, 6725, 10.1002/adfm.201502859
De Stefano, 2007, DNA optical detection based on porous silicon technology: from biosensors to biochips, Sensors, 7, 214, 10.3390/s7020214
Zhao, 2014, Effect of DNA-induced corrosion on passivated porous silicon biosensors, ACS Appl. Mater. Interfaces, 6, 13510, 10.1021/am502582s
Layouni, 2020, Thermally carbonized porous silicon for robust label-free DNA optical sensing, ACS Appl. Bio Mater., 3, 622, 10.1021/acsabm.9b01002
Zhang, 2018, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities, Lab Chip, 18, 57, 10.1039/C7LC00641A
Pal, 2012, 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition, Anal. Chem., 84, 8900, 10.1021/ac3012945
Paulsen
Chow, 2004, Ultra compact biochemical sensor built with two-dimensional photonic crystal microcavity, 909
Liang, 2013, Scalable photonic crystal chips for high sensitivity protein detection, Optic Express, 21, 32306, 10.1364/OE.21.032306
Joannopoulos, 2008
Lalanne, 2003, Bloch-wave engineering for high-Q, small-V microcavities, IEEE J. Quant. Electron., 39, 1430, 10.1109/JQE.2003.818283
Surdo, 2018, Near-infrared silicon photonic crystals with high-order photonic bandgaps for high-sensitivity chemical analysis of water-ethanol mixtures, ACS Sens., 3, 2223, 10.1021/acssensors.8b00933
Krismastuti, 2017, Disperse-and-Collect approach for the type-selective detection of matrix metalloproteinases in porous silicon resonant microcavities, ACS Sens., 2, 203, 10.1021/acssensors.6b00442
Ramiro-Manzano, 2012, Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices, Nanoscale Res. Lett., 7, 497, 10.1186/1556-276X-7-497
Maniya, 2014, Simulation and fabrication study of porous silicon photonic crystal, Optik, 125, 828, 10.1016/j.ijleo.2013.07.062
Chhasatia, 2018, Performance optimisation of porous silicon rugate filter biosensor for the detection of insulin, Sensor. Actuator. B Chem., 273, 1313, 10.1016/j.snb.2018.07.021
Keshavarzi, 2019, Porous silicon based rugate filter wheel for multispectral imaging applications, ECS J. Solid State Sci. Technol., 8, Q43, 10.1149/2.0251902jss
Arshavsky-Graham, 2019, Porous silicon-based photonic biosensors: current status and emerging applications, Anal. Chem., 91, 441, 10.1021/acs.analchem.8b05028
Kozma, 2014, Integrated planar optical waveguide interferometer biosensors: a comparative review, Biosens. Bioelectron., 58, 287, 10.1016/j.bios.2014.02.049
Li, 2020, High-performance fiber sensor via Mach-Zehnder interferometer based on immersing exposed-core microstructure fiber in oriented liquid crystals, Optic Express, 28, 3576, 10.1364/OE.385521
Yuan, 2015, Mach-zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section, Sensors, 15, 21500, 10.3390/s150921500
Sekoguchi, 2014, Photonic crystal nanocavity with a Q-factor of ∼9 million, Optic Express, 22, 916, 10.1364/OE.22.000916
Pitruzzello, 2018, Photonic crystal resonances for sensing and imaging, J. Optic., 20
Fernández Gavela, 2016, Last advances in silicon-based optical biosensors, Sensors, 16, 285, 10.3390/s16030285
Xu, 2007, All-optical logic based on silicon micro-ring resonators, Optic Express, 15, 924, 10.1364/OE.15.000924
Claes, 2010, Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit, Optic Express, 18, 22747, 10.1364/OE.18.022747
Jiang, 2013, Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode, Opt. Lett., 38, 1349, 10.1364/OL.38.001349
Chen, 2015, Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels, Optic Commun., 344, 129, 10.1016/j.optcom.2015.01.028
Krismastuti, 2016, Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities, Adv. Sci., 3, 1500383, 10.1002/advs.201500383
Li, 2012, Optical sensing nanostructures for porous silicon rugate filters, Nanoscale Res. Lett., 7, 1
Kilian, 2007, Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices, Adv. Funct. Mater., 17, 2884, 10.1002/adfm.200600790
Chandrasekar, 2019, Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks, Opt. Eng., 58, 1, 10.1117/1.OE.58.2.020901
Pal, 2013, Selective virus detection in complex sample matrices with photonic crystal optical cavities, Biosens. Bioelectron., 44, 229, 10.1016/j.bios.2013.01.004
Surdo, 2020, Impact of fabrication and bioassay surface roughness on the performance of label-free resonant biosensors based on one-dimensional photonic crystal microcavities, ACS Sens., 5, 2894, 10.1021/acssensors.0c01183
Chen, 2012, Controlled photonic manipulation of proteins and other nanomaterials, Nano Lett., 12, 1633, 10.1021/nl204561r
Kilian, 2009, Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals, Nano Lett., 9, 2021, 10.1021/nl900283j
Yetisen, 2014, Reusable, robust, and accurate laser-generated photonic nanosensor, Nano Lett., 14, 3587, 10.1021/nl5012504
Cunningham, 2002, Colorimetric resonant reflection as a direct biochemical assay technique, Sensor. Actuator. B Chem., 81, 316, 10.1016/S0925-4005(01)00976-5
Magnusson, 2011, Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel, Sensors, 11, 1476, 10.3390/s110201476
Triggs, 2017, Chirped guided-mode resonance biosensor, Optica, 4, 229, 10.1364/OPTICA.4.000229
Kouba, 2006, Fabrication of Nanoimprint stamps for photonic crystals, J. Phys. Conf. Ser., 34
Hsu, 2012, Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint, Microelectron. Eng., 91, 178, 10.1016/j.mee.2011.10.003
Li, 2011, New concepts of integrated photonic biosensors based on porous silicon
Inan, 2017, Photonic crystals: emerging biosensors and their promise for point-of-care applications, Chem. Soc. Rev., 46, 366, 10.1039/C6CS00206D
Lombardo, 2004, Silicon nanocrystal memories, 388
Irrera, 2005, Correlation between electroluminescence and structural properties of Si nanoclusters, Opt. Mater., 27, 1031, 10.1016/j.optmat.2004.08.058
Pavesi, 2000, Optical gain in silicon nanocrystals, Nature, 408, 440, 10.1038/35044012
Ding, 2002, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science, 296, 1293, 10.1126/science.1069336
Zhan, 2008, Effects of Si-nanocrystal formation in dielectric layers on reliability of RF MEMS switches, 548
Öğüt, 1997, Quantum confinement and optical gaps in Si nanocrystals, Phys. Rev. Lett., 79, 1770, 10.1103/PhysRevLett.79.1770
Chinnathambi, 2014, Silicon quantum dots for biological applications, Adv. Healthc. Mater., 3, 10, 10.1002/adhm.201300157
Silvi, 2015, Luminescent sensors based on quantum dot-molecule conjugates, Chem. Soc. Rev., 44, 4275, 10.1039/C4CS00400K
Freeman, 2012, Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives, Adv. Mater., 24, 6416, 10.1002/adma.201202793
De Los Reyes, 2015, Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals, Phys. Chem. Chem. Phys., 17, 30125, 10.1039/C5CP04819B
Zhang, 2015, Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles, Anal. Chem., 87, 3360, 10.1021/ac504520g
Yue, 2013, Quantum-dot-based photoelectrochemical sensors for chemical and biological detection, ACS Appl. Mater. Interfaces, 5, 2800, 10.1021/am3028662
Lin, 2015, Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics, RSC Adv., 5, 27458, 10.1039/C5RA01769F
Gelloz, 2019, Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability, Front. Physiol., 7, 47, 10.3389/fphy.2019.00047
Zhong, 2013, Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes, J. Am. Chem. Soc., 135, 8350, 10.1021/ja4026227
Wang, 2017, Silicon nanocrystals with pH-sensitive tunable light emission from violet to blue-green, Sensors, 17, 2396, 10.3390/s17102396
Wang, 2017, Recent advances in silicon nanomaterial-based fluorescent sensors, Sensors, 17, 268, 10.3390/s17020268
Li, 2018, Silicon quantum dots with tunable emission synthesized via one-step hydrothermal method and their application in alkaline phosphatase detection, Sensor. Actuator. B Chem., 260, 426, 10.1016/j.snb.2017.12.175
Yi, 2013, A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem., 85, 11464, 10.1021/ac403257p
Ban, 2015, A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe, Anal. Methods., 7, 1732, 10.1039/C4AY02729A
Yi, 2013, Label-free Si quantum dots as photoluminescence probes for glucose detection, Chem. Commun., 49, 612, 10.1039/C2CC36282A
Du, 2019, Enzyme free glucose sensing by amino-functionalized silicon quantum dot, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 216, 303, 10.1016/j.saa.2019.03.071
Chen, 2014, Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose, Chem. Commun., 50, 6771, 10.1039/C4CC01703J
Huang, 2020, Fluorescence biosensor based on silicon quantum dots and 5,5′-dithiobis-(2-nitrobenzoic acid) for thiols in living cells, Spectrochim, Acta Part A Mol. Biomol. Spectrosc., 229, 117972, 10.1016/j.saa.2019.117972
Ji, 2018, Silicon nanomaterials for biosensing and bioimaging analysis, Front. Chem., 6, 38, 10.3389/fchem.2018.00038
Kramer, 2015, Plasmonic properties of silicon nanocrystals doped with boron and phosphorus, Nano Lett., 15, 5597, 10.1021/acs.nanolett.5b02287
Rowe, 2013, Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance, Nano Lett., 13, 1317, 10.1021/nl4001184
D’Andrea, 2016, Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering, Nanotechnology, 27, 375603, 10.1088/0957-4484/27/37/375603
Powell, 2016, Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial, Sci. Rep., 6, 1, 10.1038/srep19663
Sapsford, 2006, Biosensing with luminescent semiconductor quantum dots, Sensors, 6, 925, 10.3390/s6080925
Alivisatos, 1996, Semiconductor clusters, nanocrystals, and quantum dots, Science, 271, 933, 10.1126/science.271.5251.933
Dohnalová, 2013, Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission, Light Sci. Appl., 2, 10.1038/lsa.2013.3
Donato, 2019, Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams, Nano Lett., 19, 342, 10.1021/acs.nanolett.8b03978
Lo Faro, 2018, Low cost fabrication of Si NWs/CuI heterostructures, Nanomaterials, 8, 569, 10.3390/nano8080569
Garnett, 2010, Light trapping in silicon nanowire solar cells, Nano Lett., 10, 1082, 10.1021/nl100161z
Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635
Irrera, 2016, Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires, Nano Lett., 16, 4181, 10.1021/acs.nanolett.6b01059
Lo Faro, 2020, Low cost synthesis of silicon nanowires for photonic applications, J. Mater. Sci. Mater. Electron., 31, 34, 10.1007/s10854-019-00672-y
Leonardi, 2020, Silicon nanowire luminescent sensor for cardiovascular risk in saliva, J. Mater. Sci. Mater. Electron., 31, 10, 10.1007/s10854-018-0417-y
Leonardi, 2018, Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors, ACS Sens., 3, 1690, 10.1021/acssensors.8b00422
Gesztelyi, 2012, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66, 427, 10.1007/s00407-012-0098-5