Biosensing platforms based on silicon nanostructures: A critical review

Analytica Chimica Acta - Tập 1160 - Trang 338393 - 2021
Antonio Alessio Leonardi1,2,3, Maria José Lo Faro1,2, Alessia Irrera3
1Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
2CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy
3CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy

Tài liệu tham khảo

Faro, 2019, Fractal silver dendrites as 3D SERS platform for highly sensitive detection of biomolecules in hydration conditions, Nanomaterials, 9 Im, 2014, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor, Nat. Biotechnol., 32, 490, 10.1038/nbt.2886 Breger, 2020, Quantum dot lipase biosensor utilizing a custom-synthesized peptidyl-ester substrate, ACS Sens., 5, 1295, 10.1021/acssensors.9b02291 Zhao, 2020, Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection, Microchem. J., 155, 104675, 10.1016/j.microc.2020.104675 Hjiri, 2013, CO and NO2 selective monitoring by ZnO-based sensors, Nanomaterials, 3, 357, 10.3390/nano3030357 Genner, 2020, A quantum cascade laser-based multi-gas sensor for ambient air monitoring, Sensors, 20, 1850, 10.3390/s20071850 Arunachalam, 2020, Ionization gas sensor using suspended carbon nanotube beams, Sensors, 20, 1660, 10.3390/s20061660 Zhang, 2019, High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering, Sensors, 20, 149, 10.3390/s20010149 Nakate, 2020, Ultra thin NiO nanosheets for high performance hydrogen gas sensor device, Appl. Surf. Sci., 506, 144971, 10.1016/j.apsusc.2019.144971 Engel, 2010, Supersensitive detection of explosives by silicon nanowire arrays, Angew. Chem. Int. Ed., 49, 6830, 10.1002/anie.201000847 Sharma, 2020, Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium, Opt. Mater., 100, 109646, 10.1016/j.optmat.2019.109646 Yang, 2020, Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber, Sensor. Actuator. B Chem., 306, 127585, 10.1016/j.snb.2019.127585 Li, 2020, Active self-assembled monolayer sensors for trace explosive detection, Langmuir, 36, 1462, 10.1021/acs.langmuir.9b03742 Zhang, 2020, Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives, Sensor. Actuator. B Chem., 304, 127233, 10.1016/j.snb.2019.127233 Chen, 2008, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Res., 18, 997, 10.1038/cr.2008.282 Morrow, 2003, Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy, Circulation, 108, 250, 10.1161/01.CIR.0000078080.37974.D2 Jhala, 2006, Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates, Am. J. Clin. Pathol., 126, 572, 10.1309/CEV30BE088CBDQD9 Fremont, 2010, Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis, J. Trauma Inj. Infect. Crit. Care, 68, 1121 Schuetz, 2015, Biomarker-guided personalised emergency medicine for all - hope for another hype?, Swiss Med. Wkly., 145 Whicher, 1982, Immunonephelometric and immunoturbidimetric assays for proteins, Crit. Rev. Clin. Lab Sci., 18, 213, 10.3109/10408368209085072 Denham, 2007, Evaluation of immunoturbidimetric specific protein methods using the Architect ci8200: comparison with immunonephelometry, Ann. Clin. Biochem., 44, 529, 10.1258/000456307782268237 Eckersall, 1991, An immunoturbidimetric assay for canine C-reactive protein, Vet. Res. Commun., 15, 17, 10.1007/BF00497786 Chambers, 1987, Overestimation of immunoglobulins in the presence of rheumatoid factor by kinetic immunonephelometry and rapid immunoturbidimetry, Ann. Clin. Biochem., 24, 520, 10.1177/000456328702400518 Bakker, 1988, Immunoturbidimetry of urinary albumin: prevention of adsorption of albumin; influence of other urinary constituents, Clin. Chem., 34, 82, 10.1093/clinchem/34.1.82 Lequin, 2005, Enzyme immunoassay (EIA)/Enzyme-Linked immunosorbent assay (ELISA), Clin. Chem., 51, 2415, 10.1373/clinchem.2005.051532 Gan, 2013, Enzyme immunoassay and enzyme-linked immunosorbent assay, J. Invest. Dermatol., 133, 1, 10.1038/jid.2013.287 Zhang, 2013, Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general, Analyst, 139, 439, 10.1039/C3AN01835K Irrera, 2018, New generation of ultrasensitive label-free optical Si nanowire-based biosensors, ACS Photonics, 5, 471, 10.1021/acsphotonics.7b00983 Punyadeera, 2011, One-step homogeneous C-reactive protein assay for saliva, J. Immunol. Methods, 373, 19, 10.1016/j.jim.2011.07.013 Zhao, 2003, Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles, J. Am. Chem. Soc., 125, 11474, 10.1021/ja0358854 Sierks, 2011, CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease, Integr. Biol., 3, 1188, 10.1039/c1ib00018g An, 2015, Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons’s model, Biosens. Bioelectron., 67, 739, 10.1016/j.bios.2014.10.049 Heid, 1996, Real time quantitative PCR, Genome Res., 6, 101, 10.1101/gr.6.10.986 Mackay, 2004, Real-time PCR in the microbiology laboratory, Clin. Microbiol. Infect., 10, 190, 10.1111/j.1198-743X.2004.00722.x Almassian, 2013, Portable nucleic acid thermocyclers, Chem. Soc. Rev., 42, 8769, 10.1039/c3cs60144g Nurmi, 2002, High-performance real-time quantitative RT-PCR using lanthanide probes and a dual-temperature hybridization assay, Anal. Chem., 74, 3525, 10.1021/ac020093y Forootan, 2017, Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR), Biomol. Detect. Quantif., 12, 1, 10.1016/j.bdq.2017.04.001 Hoy, 2013, DNA amplification by the Polymerase chain reaction, 307 Mabey, 2004, Diagnostics for the developing world, Nat. Rev. Microbiol., 2, 231, 10.1038/nrmicro841 Yoon, 2009, Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges, Adv. Funct. Mater., 19, 1567, 10.1002/adfm.200801141 Xu, 2009, Recent development of nano-materials used in DNA biosensors, Sensors, 9, 5534, 10.3390/s90705534 Ma, 2020, Serum IgA, IgM, and IgG responses in COVID-19, cell, Mol. Immunol., 17, 773, 10.1038/s41423-020-0474-z COVID-19 IgM/IgG Rapid Test – BioMedomics Inc., (n.d.). https://www.biomedomics.com/products/infectious-disease/covid-19-rt/(accessed July 22, 2020). Cui, 2003, High performance silicon nanowire field effect transistors, Nano Lett., 3, 149, 10.1021/nl025875l Noor, 2014, Silicon nanowires as field-effect transducers for biosensor development: a review, Anal. Chim. Acta, 825, 1, 10.1016/j.aca.2014.03.016 Bergveld, 1985, The impact of MOSFET-based sensors, Sensor. Actuator., 8, 109, 10.1016/0250-6874(85)87009-8 Gao, 2013, Integration of microfluidic system with silicon nanowires biosensor for multiplexed detection, 333 Shehada, 2016, Silicon nanowire sensors enable diagnosis of patients via exhaled breath, ACS Nano, 10, 7047, 10.1021/acsnano.6b03127 Kim, 2014, Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor, Biosens. Bioelectron., 55, 162, 10.1016/j.bios.2013.12.014 Kwon, 2011, In-situ detection of c-reactive protein using silicon nanowire field effect transistor, J. Nanosci. Nanotechnol., 1511, 10.1166/jnn.2011.3417 Bunimovich, 2006, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution, J. Am. Chem. Soc., 128, 16323, 10.1021/ja065923u Ahmad, 2018, Recent advances in nanowires-based field-effect transistors for biological sensor applications, Biosens. Bioelectron., 100, 312, 10.1016/j.bios.2017.09.024 Li, 2016, Direct real-time detection of single proteins using silicon nanowire-based electrical circuits, Nanoscale, 8, 16172, 10.1039/C6NR04103E Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711 Tran, 2018, CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization, Materials, 11, 785, 10.3390/ma11050785 Kim, 2016, Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity, Biosens. Bioelectron., 77, 695, 10.1016/j.bios.2015.10.008 McDonnell, 2009, Cardiac biomarkers and the case for point-of-care testing, Clin. Biochem., 42, 549, 10.1016/j.clinbiochem.2009.01.019 Mahajan, 2011, How to interpret elevated cardiac troponin levels, Circulation, 124, 2350, 10.1161/CIRCULATIONAHA.111.023697 Chen, 2011, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, 6, 131, 10.1016/j.nantod.2011.02.001 Patolsky, 2005, Nanowire nanosensors, mater, Today Off., 8, 20 Patolsky, 2006, Nanowire sensors for medicine and the life sciences, Nanomedicine, 1, 51, 10.2217/17435889.1.1.51 Gao, 2014, Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays, Nanoscale, 6, 13036, 10.1039/C4NR03210A Lu, 2014, Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays, ACS Appl. Mater. Interfaces, 6, 20378, 10.1021/am505915y Puppo, 2014, High sensitive detection in tumor extracts with SiNW-FET in-air biosensors, 866 Tran, 2016, Toward intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire field effect transistors, ACS Nano, 10, 2357, 10.1021/acsnano.5b07136 Hsu, 2015, Multiple silicon nanowires with enzymatic modification for measuring glucose concentration, Micromachines, 6, 1135, 10.3390/mi6081135 Nuzaihan, 2016, Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control, Biosens. Bioelectron., 83, 106, 10.1016/j.bios.2016.04.033 M. N, 2016, Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications, PloS One, 11, 10.1371/journal.pone.0152318 Schmidt, 2010, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110, 361, 10.1021/cr900141g Hochbaum, 2005, Controlled growth of Si nanowire arrays for device integration, Nano Lett., 5, 457, 10.1021/nl047990x Zhu, 2009, Mechanical properties of Vapor−Liquid−Solid synthesized silicon nanowires, Nano Lett., 9, 3934, 10.1021/nl902132w Leonardi, 2020, CMOS-compatible and low-cost thin film MACE approach for light-emitting Si NWs fabrication, Nanomaterials, 10, 966, 10.3390/nano10050966 Coffer, 2014 Randall, 2005, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proc. Natl. Acad. Sci. U. S. A, 102, 10813, 10.1073/pnas.0503287102 Zimmermann, 2007, Capillary pumps for autonomous capillary systems, Lab Chip, 7, 119, 10.1039/B609813D Woias, 2005, Micropumps—past, progress and future prospects, Sensor. Actuator. B Chem., 105, 28, 10.1016/S0925-4005(04)00108-X Tan, 2006, Microfluidic design for bio-sample delivery to silicon nanowire biosensor - a simulation study, J. Phys. Conf. Ser., 34, 626, 10.1088/1742-6596/34/1/103 Hemmilä, 2014, Integration of microfluidic sample delivery system on silicon nanowire-based biosensor, Microsyst. Technol., 21, 571, 10.1007/s00542-014-2076-0 Lee, 2010, Silicon nanowires for high-sensitivity CRP detection, Proc. IEEE Sensors, 415 Lee, 2017, Metal-coated microfluidic channels: an approach to eliminate streaming potential effects in nano biosensors, Biosens. Bioelectron., 87, 447, 10.1016/j.bios.2016.08.065 Thust, 1996, Porous silicon as a substrate material for potentiometric biosensors, Meas. Sci. Technol., 7, 26, 10.1088/0957-0233/7/1/003 Mulloni, 2000, Porous silicon microcavities as optical chemical sensors, Appl. Phys. Lett., 76, 2523, 10.1063/1.126396 Dhanekar, 2013, Porous silicon biosensor: current status, Biosens, Bioelectron, 41, 54, 10.1016/j.bios.2012.09.045 Bisi, 2000, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38, 1, 10.1016/S0167-5729(99)00012-6 Harraz, 2014, Porous silicon chemical sensors and biosensors: a review, Sensor. Actuator. B Chem., 202, 897, 10.1016/j.snb.2014.06.048 Lewis, 2005, Sensitive, selective, and analytical improvements to a porous silicon gas sensor, Sensor. Actuator. B Chem., 110, 54, 10.1016/j.snb.2005.01.014 Baratto, 2002, Multiparametric porous silicon sensors, Sensors, 2, 121, 10.3390/s20300121 Reta, 2019, Label-free bacterial toxin detection in water supplies using porous silicon nanochannel sensors, ACS Sens., 4, 1515, 10.1021/acssensors.8b01670 Foglieni, 2010, Integrated PCR amplification and detection processes on a Lab-on-Chip platform: a new advanced solution for molecular diagnostics, Clin. Chem. Lab. Med., 48, 329, 10.1515/CCLM.2010.063 Baldwin, 2002, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device, Anal. Chem., 74, 3690, 10.1021/ac011188n Tsopela, 2016, Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis, Biosens. Bioelectron., 79, 568, 10.1016/j.bios.2015.12.050 Brett, 1993 Simões, 2017, Electrochemical sensors, 155 Bronzino, 2018 Li, 2012 Thévenot, 2001, Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 16, 121, 10.1016/S0956-5663(01)00115-4 Al-Hardan, 2016, High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor, Sensors, 16, 839, 10.3390/s16060839 Xu, 2015, Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule, Meas. J. Int. Meas. Confed., 64, 49, 10.1016/j.measurement.2014.12.044 Chen, 2015, On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment, Sensor. Actuator. B Chem., 209, 658, 10.1016/j.snb.2014.12.025 Das, 2014, Highly sensitive palladium oxide thin film extended gate FETs as pH sensor, Sensor. Actuator. B Chem., 205, 199, 10.1016/j.snb.2014.08.057 Song, 2007, Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode, J. Biosci. Bioeng., 103, 32, 10.1263/jbb.103.32 Kumar Reddy, 2003, Estimation of triglycerides by a porous silicon based potentiometric biosensor, Curr. Appl. Phys., 3, 155, 10.1016/S1567-1739(02)00194-3 Setzu, 2007, Porous silicon-based potentiometric biosensor for triglycerides, Phys. Status Solidi, 204, 1434, 10.1002/pssa.200674378 Yun, 2012, Fabrication and electrochemical characterization of nanoporous silicon electrode for Amperometric urea biosensor, Jpn. J. Appl. Phys., 51, 10.1143/JJAP.51.06FG02 Archer, 2004, Macroporous silicon electrical sensor for DNA hybridization detection, Biomed. Microdevices, 6, 203, 10.1023/B:BMMD.0000042049.85425.af Jin, 2010, Fabrication and electroanalytical characterization of label-free DNA sensor based on direct electropolymerization of pyrrole on p-type porous silicon substrates, J. Porous Mater., 17, 169, 10.1007/s10934-009-9277-4 Archer, 2003, Electrical sensing of DNA hybridization in porous silicon layers, Phys. Status Solidi, 198, 503, 10.1002/pssa.200306641 Sailor, 2012 Lehmann, 1991, Porous silicon formation: a quantum wire effect, Appl. Phys. Lett., 58, 856, 10.1063/1.104512 Karbassian, 2014, Luminescent porous silicon prepared by reactive ion etching, J. Phys. D Appl. Phys., 47, 385103, 10.1088/0022-3727/47/38/385103 Chiappini, 2010, Tailored porous silicon microparticles: fabrication and properties, ChemPhysChem, 11, 1029, 10.1002/cphc.200900914 Song, 2004, Thermal conductivity of periodic microporous silicon films, Appl. Phys. Lett., 84, 687, 10.1063/1.1642753 De Stefano, 2019, Porous silicon optical biosensors: still a promise or a failure?, Sensors, 19, 4776, 10.3390/s19214776 Ensafi, 2014, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite, Electrochim. Acta, 123, 219, 10.1016/j.electacta.2014.01.031 Guo, 2019, Porous silicon nanostructures as effective faradaic electrochemical sensing platforms, Adv. Funct. Mater., 29, 1809206, 10.1002/adfm.201809206 Dey, 2018, Semiconductor metal oxide gas sensors: a review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 229, 206, 10.1016/j.mseb.2017.12.036 Mirzaei, 2016, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review, Ceram. Int., 42, 15119, 10.1016/j.ceramint.2016.06.145 Lin, 1997, A porous silicon-based optical interferometric biosensor, Science, 278, 840, 10.1126/science.278.5339.840 Nassiopoulou, 2007, Porous silicon for sensor applications, 189 Dhanekar, 2016, Optical measurement of trace level water vapours using functionalized porous silicon: selectivity studies, RSC Adv., 6, 72371, 10.1039/C6RA12669C Syshchyk, 2015, Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosens. Bioelectron., 66, 89, 10.1016/j.bios.2014.10.075 Fauchet, 1996, Photoluminescence and electroluminescence from porous silicon, J. Lumin., 70, 294, 10.1016/0022-2313(96)82860-2 Credo, 1999, External quantum efficiency of single porous silicon nanoparticles, Appl. Phys. Lett., 74, 1978, 10.1063/1.123719 Chiappini, 2010, Biodegradable porous silicon barcode nanowires with defined geometry, Adv. Funct. Mater., 20, 2231, 10.1002/adfm.201000360 Urmann, 2015, Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds, Anal. Chem., 87, 1999, 10.1021/ac504487g De Stefano, 2007, Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors, Phys. Status Solidi, 4, 1941, 10.1002/pssc.200674336 Moretti, 2007, I. Rendina, Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors, Appl. Phys. Lett., 90, 191112, 10.1063/1.2737391 Korotcenkov, 2019, How to improve the performance of porous silicon-based gas and vapor sensors? Approaches and achievements, Phys. Status Solidi, 216, 1900348, 10.1002/pssa.201900348 Chan, 2000, Porous silicon microcavities for biosensing applications, Phys. Status Solidi, 182, 541, 10.1002/1521-396X(200011)182:1<541::AID-PSSA541>3.0.CO;2-# Mariani, 2018, Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing, Nat. Commun., 9, 1, 10.1038/s41467-018-07723-8 Chhasatia, 2017, Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor, Biosens. Bioelectron., 91, 515, 10.1016/j.bios.2017.01.004 Maniya, 2020, Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection, Mater. Sci. Semicond. Process., 115, 105126, 10.1016/j.mssp.2020.105126 Mariani, 2016, 10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors, ACS Sens., 1, 1471, 10.1021/acssensors.6b00634 Vilensky, 2015, Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection, Adv. Funct. Mater., 25, 6725, 10.1002/adfm.201502859 De Stefano, 2007, DNA optical detection based on porous silicon technology: from biosensors to biochips, Sensors, 7, 214, 10.3390/s7020214 Zhao, 2014, Effect of DNA-induced corrosion on passivated porous silicon biosensors, ACS Appl. Mater. Interfaces, 6, 13510, 10.1021/am502582s Layouni, 2020, Thermally carbonized porous silicon for robust label-free DNA optical sensing, ACS Appl. Bio Mater., 3, 622, 10.1021/acsabm.9b01002 Zhang, 2018, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities, Lab Chip, 18, 57, 10.1039/C7LC00641A Pal, 2012, 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition, Anal. Chem., 84, 8900, 10.1021/ac3012945 Paulsen Chow, 2004, Ultra compact biochemical sensor built with two-dimensional photonic crystal microcavity, 909 Liang, 2013, Scalable photonic crystal chips for high sensitivity protein detection, Optic Express, 21, 32306, 10.1364/OE.21.032306 Joannopoulos, 2008 Lalanne, 2003, Bloch-wave engineering for high-Q, small-V microcavities, IEEE J. Quant. Electron., 39, 1430, 10.1109/JQE.2003.818283 Surdo, 2018, Near-infrared silicon photonic crystals with high-order photonic bandgaps for high-sensitivity chemical analysis of water-ethanol mixtures, ACS Sens., 3, 2223, 10.1021/acssensors.8b00933 Krismastuti, 2017, Disperse-and-Collect approach for the type-selective detection of matrix metalloproteinases in porous silicon resonant microcavities, ACS Sens., 2, 203, 10.1021/acssensors.6b00442 Ramiro-Manzano, 2012, Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices, Nanoscale Res. Lett., 7, 497, 10.1186/1556-276X-7-497 Maniya, 2014, Simulation and fabrication study of porous silicon photonic crystal, Optik, 125, 828, 10.1016/j.ijleo.2013.07.062 Chhasatia, 2018, Performance optimisation of porous silicon rugate filter biosensor for the detection of insulin, Sensor. Actuator. B Chem., 273, 1313, 10.1016/j.snb.2018.07.021 Keshavarzi, 2019, Porous silicon based rugate filter wheel for multispectral imaging applications, ECS J. Solid State Sci. Technol., 8, Q43, 10.1149/2.0251902jss Arshavsky-Graham, 2019, Porous silicon-based photonic biosensors: current status and emerging applications, Anal. Chem., 91, 441, 10.1021/acs.analchem.8b05028 Kozma, 2014, Integrated planar optical waveguide interferometer biosensors: a comparative review, Biosens. Bioelectron., 58, 287, 10.1016/j.bios.2014.02.049 Li, 2020, High-performance fiber sensor via Mach-Zehnder interferometer based on immersing exposed-core microstructure fiber in oriented liquid crystals, Optic Express, 28, 3576, 10.1364/OE.385521 Yuan, 2015, Mach-zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section, Sensors, 15, 21500, 10.3390/s150921500 Sekoguchi, 2014, Photonic crystal nanocavity with a Q-factor of ∼9 million, Optic Express, 22, 916, 10.1364/OE.22.000916 Pitruzzello, 2018, Photonic crystal resonances for sensing and imaging, J. Optic., 20 Fernández Gavela, 2016, Last advances in silicon-based optical biosensors, Sensors, 16, 285, 10.3390/s16030285 Xu, 2007, All-optical logic based on silicon micro-ring resonators, Optic Express, 15, 924, 10.1364/OE.15.000924 Claes, 2010, Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit, Optic Express, 18, 22747, 10.1364/OE.18.022747 Jiang, 2013, Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode, Opt. Lett., 38, 1349, 10.1364/OL.38.001349 Chen, 2015, Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels, Optic Commun., 344, 129, 10.1016/j.optcom.2015.01.028 Krismastuti, 2016, Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities, Adv. Sci., 3, 1500383, 10.1002/advs.201500383 Li, 2012, Optical sensing nanostructures for porous silicon rugate filters, Nanoscale Res. Lett., 7, 1 Kilian, 2007, Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices, Adv. Funct. Mater., 17, 2884, 10.1002/adfm.200600790 Chandrasekar, 2019, Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks, Opt. Eng., 58, 1, 10.1117/1.OE.58.2.020901 Pal, 2013, Selective virus detection in complex sample matrices with photonic crystal optical cavities, Biosens. Bioelectron., 44, 229, 10.1016/j.bios.2013.01.004 Surdo, 2020, Impact of fabrication and bioassay surface roughness on the performance of label-free resonant biosensors based on one-dimensional photonic crystal microcavities, ACS Sens., 5, 2894, 10.1021/acssensors.0c01183 Chen, 2012, Controlled photonic manipulation of proteins and other nanomaterials, Nano Lett., 12, 1633, 10.1021/nl204561r Kilian, 2009, Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals, Nano Lett., 9, 2021, 10.1021/nl900283j Yetisen, 2014, Reusable, robust, and accurate laser-generated photonic nanosensor, Nano Lett., 14, 3587, 10.1021/nl5012504 Cunningham, 2002, Colorimetric resonant reflection as a direct biochemical assay technique, Sensor. Actuator. B Chem., 81, 316, 10.1016/S0925-4005(01)00976-5 Magnusson, 2011, Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel, Sensors, 11, 1476, 10.3390/s110201476 Triggs, 2017, Chirped guided-mode resonance biosensor, Optica, 4, 229, 10.1364/OPTICA.4.000229 Kouba, 2006, Fabrication of Nanoimprint stamps for photonic crystals, J. Phys. Conf. Ser., 34 Hsu, 2012, Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint, Microelectron. Eng., 91, 178, 10.1016/j.mee.2011.10.003 Li, 2011, New concepts of integrated photonic biosensors based on porous silicon Inan, 2017, Photonic crystals: emerging biosensors and their promise for point-of-care applications, Chem. Soc. Rev., 46, 366, 10.1039/C6CS00206D Lombardo, 2004, Silicon nanocrystal memories, 388 Irrera, 2005, Correlation between electroluminescence and structural properties of Si nanoclusters, Opt. Mater., 27, 1031, 10.1016/j.optmat.2004.08.058 Pavesi, 2000, Optical gain in silicon nanocrystals, Nature, 408, 440, 10.1038/35044012 Ding, 2002, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science, 296, 1293, 10.1126/science.1069336 Zhan, 2008, Effects of Si-nanocrystal formation in dielectric layers on reliability of RF MEMS switches, 548 Öğüt, 1997, Quantum confinement and optical gaps in Si nanocrystals, Phys. Rev. Lett., 79, 1770, 10.1103/PhysRevLett.79.1770 Chinnathambi, 2014, Silicon quantum dots for biological applications, Adv. Healthc. Mater., 3, 10, 10.1002/adhm.201300157 Silvi, 2015, Luminescent sensors based on quantum dot-molecule conjugates, Chem. Soc. Rev., 44, 4275, 10.1039/C4CS00400K Freeman, 2012, Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives, Adv. Mater., 24, 6416, 10.1002/adma.201202793 De Los Reyes, 2015, Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals, Phys. Chem. Chem. Phys., 17, 30125, 10.1039/C5CP04819B Zhang, 2015, Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles, Anal. Chem., 87, 3360, 10.1021/ac504520g Yue, 2013, Quantum-dot-based photoelectrochemical sensors for chemical and biological detection, ACS Appl. Mater. Interfaces, 5, 2800, 10.1021/am3028662 Lin, 2015, Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics, RSC Adv., 5, 27458, 10.1039/C5RA01769F Gelloz, 2019, Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability, Front. Physiol., 7, 47, 10.3389/fphy.2019.00047 Zhong, 2013, Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes, J. Am. Chem. Soc., 135, 8350, 10.1021/ja4026227 Wang, 2017, Silicon nanocrystals with pH-sensitive tunable light emission from violet to blue-green, Sensors, 17, 2396, 10.3390/s17102396 Wang, 2017, Recent advances in silicon nanomaterial-based fluorescent sensors, Sensors, 17, 268, 10.3390/s17020268 Li, 2018, Silicon quantum dots with tunable emission synthesized via one-step hydrothermal method and their application in alkaline phosphatase detection, Sensor. Actuator. B Chem., 260, 426, 10.1016/j.snb.2017.12.175 Yi, 2013, A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem., 85, 11464, 10.1021/ac403257p Ban, 2015, A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe, Anal. Methods., 7, 1732, 10.1039/C4AY02729A Yi, 2013, Label-free Si quantum dots as photoluminescence probes for glucose detection, Chem. Commun., 49, 612, 10.1039/C2CC36282A Du, 2019, Enzyme free glucose sensing by amino-functionalized silicon quantum dot, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 216, 303, 10.1016/j.saa.2019.03.071 Chen, 2014, Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose, Chem. Commun., 50, 6771, 10.1039/C4CC01703J Huang, 2020, Fluorescence biosensor based on silicon quantum dots and 5,5′-dithiobis-(2-nitrobenzoic acid) for thiols in living cells, Spectrochim, Acta Part A Mol. Biomol. Spectrosc., 229, 117972, 10.1016/j.saa.2019.117972 Ji, 2018, Silicon nanomaterials for biosensing and bioimaging analysis, Front. Chem., 6, 38, 10.3389/fchem.2018.00038 Kramer, 2015, Plasmonic properties of silicon nanocrystals doped with boron and phosphorus, Nano Lett., 15, 5597, 10.1021/acs.nanolett.5b02287 Rowe, 2013, Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance, Nano Lett., 13, 1317, 10.1021/nl4001184 D’Andrea, 2016, Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering, Nanotechnology, 27, 375603, 10.1088/0957-4484/27/37/375603 Powell, 2016, Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial, Sci. Rep., 6, 1, 10.1038/srep19663 Sapsford, 2006, Biosensing with luminescent semiconductor quantum dots, Sensors, 6, 925, 10.3390/s6080925 Alivisatos, 1996, Semiconductor clusters, nanocrystals, and quantum dots, Science, 271, 933, 10.1126/science.271.5251.933 Dohnalová, 2013, Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission, Light Sci. Appl., 2, 10.1038/lsa.2013.3 Donato, 2019, Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams, Nano Lett., 19, 342, 10.1021/acs.nanolett.8b03978 Lo Faro, 2018, Low cost fabrication of Si NWs/CuI heterostructures, Nanomaterials, 8, 569, 10.3390/nano8080569 Garnett, 2010, Light trapping in silicon nanowire solar cells, Nano Lett., 10, 1082, 10.1021/nl100161z Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635 Irrera, 2016, Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires, Nano Lett., 16, 4181, 10.1021/acs.nanolett.6b01059 Lo Faro, 2020, Low cost synthesis of silicon nanowires for photonic applications, J. Mater. Sci. Mater. Electron., 31, 34, 10.1007/s10854-019-00672-y Leonardi, 2020, Silicon nanowire luminescent sensor for cardiovascular risk in saliva, J. Mater. Sci. Mater. Electron., 31, 10, 10.1007/s10854-018-0417-y Leonardi, 2018, Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors, ACS Sens., 3, 1690, 10.1021/acssensors.8b00422 Gesztelyi, 2012, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66, 427, 10.1007/s00407-012-0098-5