Bioresorbable Everolimus-Eluting Vascular Scaffold for Patients With Peripheral Artery Disease (ESPRIT I)

JACC: Cardiovascular Interventions - Tập 9 - Trang 1178-1187 - 2016
Johannes Lammer1, Marc Bosiers2, Koen Deloose3, Andrej Schmidt4, Thomas Zeller4, Florian Wolf1, Wouter Lansink5, Antoine Sauguet6, Frank Vermassen7, Geert Lauwers5, Dierk Scheinert3, Jeffrey J. Popma8, Robert McGreevy9, Richard Rapoza9, Lewis B. Schwartz9, Michael R. Jaff10
1Cardiovascular and Interventional Radiology Department, Medical University Vienna, Vienna, Austria
2Department of Vascular Surgery, Sint-Blasius Hospital, Dendermonde, Belgium
3Department of Interventional Angiology, University Leipzig, Leipzig, Germany
4Department of Angiology, Universitaets-Herzzentrum Freiburg-Bad Krozingen, Bad Krozingen, Germany
5Vaatcentrum, Oost Limburg Ziekenhuis, Genk, Belgium
6Department of General Interventional Cardiology, Clinique Pasteur, Toulouse, France
7Department of Vascular Surgery, Ghent University Hospital, Gent, Belgium
8Beth Israel Deaconess Medical Center, Boston, Massachusetts
9Abbott Vascular, Santa Clara, California
10Vascular Ultrasound Core Laboratory, Massachusetts General Hospital, Boston, Massachusetts

Tài liệu tham khảo

Serruys, 2009, A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods, Lancet, 373, 897, 10.1016/S0140-6736(09)60325-1 Serruys, 2010, Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes, Circulation, 122, 2301, 10.1161/CIRCULATIONAHA.110.970772 Tamai, 2000, Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans, Circulation, 102, 399, 10.1161/01.CIR.102.4.399 Strandberg, 2012, Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries, Circ Cardiovasc Interv, 5, 39, 10.1161/CIRCINTERVENTIONS.111.964270 Ormiston, 2008, A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial, Lancet, 37, 899, 10.1016/S0140-6736(08)60415-8 Serruys, 2011, Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes, J Am Coll Cardiol, 58, 1578, 10.1016/j.jacc.2011.05.050 Diletti, 2013, Heart, 99, 98, 10.1136/heartjnl-2012-302598 Verheye, 2014, A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results, J Am Coll Cardiol Intv, 7, 89, 10.1016/j.jcin.2013.07.007 Ormiston, 2013, J Am Coll Cardiol Intv, 6, 1026, 10.1016/j.jcin.2013.05.013 Erbel, 2007, Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, Lancet, 369, 1869, 10.1016/S0140-6736(07)60853-8 Haude, 2013, Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial, Lancet, 381, 836, 10.1016/S0140-6736(12)61765-6 Onuma, 2013, Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial, J Am Coll Cardiol Intv, 6, 999, 10.1016/j.jcin.2013.05.017 Bosiers, 2009, AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis, Cardiovasc Intervent Radiol, 32, 424, 10.1007/s00270-008-9472-8 Werner, 2014, Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study, J Am Coll Cardiol Intv, 7, 305, 10.1016/j.jcin.2013.09.009 Norgren, 2007, Inter-society consensus for the management of peripheral arterial disease (TASC II), Eur J Vasc Endovasc Surg, 33, S1, 10.1016/j.ejvs.2006.09.024 Krankenberg, 2007, Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST), Circulation, 116, 285, 10.1161/CIRCULATIONAHA.107.689141 Laird, 2010, Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: twelve-month results from the RESILIENT randomized trial, Circ Cardiovasc Interv, 3, 267, 10.1161/CIRCINTERVENTIONS.109.903468 Laird, 2012, Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the RESILIENT randomized trial, J Endovasc Ther, 19, 1, 10.1583/11-3627.1 Dake, 2011, Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results, Circ Cardiovasc Interv, 4, 495, 10.1161/CIRCINTERVENTIONS.111.962324 Dake, 2013, Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies, J Am Coll Cardiol, 61, 2417, 10.1016/j.jacc.2013.03.034 Werk, 2008, Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial, Circulation, 118, 1358, 10.1161/CIRCULATIONAHA.107.735985 Tepe, 2008, Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg, N Engl J Med, 358, 689, 10.1056/NEJMoa0706356 Scheinert, 2014, The LEVANT I (Lutonix Paclitaxel-Coated Balloon for the Prevention of Femoropopliteal Restenosis) trial for femoropopliteal revascularization: first-in-human randomized trial of low-dose drug-coated balloon versus uncoated balloon angioplasty, J Am Coll Cardiol Intv, 7, 10, 10.1016/j.jcin.2013.05.022 Tepe, 2015, Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial, Circulation, 131, 495, 10.1161/CIRCULATIONAHA.114.011004 Rosenfield, 2015, Trial of a paclitaxel-coated balloon for femoropopliteal artery disease, N Engl J Med, 373, 145, 10.1056/NEJMoa1406235 Lammer, 2012, Pharmacokinetic analysis after implantation of everolimus-eluting self-expanding stents in the peripheral vasculature, J Vasc Surg, 55, 400, 10.1016/j.jvs.2011.08.048 Lammer, 2011, First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease, J Vasc Surg, 54, 394, 10.1016/j.jvs.2011.01.047